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Abstract 
This study investigated how effective a matched-pairs strategy is at reducing the standard errors of 
estimates of experimental impacts and whether it continues to be effective after modeling pretest and 
fixed effects for upper-level units when the number of randomized clusters is small. We found that we 
benefit from a matched-pairs design even if we have a small number of clusters when the intraclass 
correlation (ICC) is large. For some of the cases, modeling pairs has great value even after controlling 
for pretest and fixed effects for schools. It decreases the standard error of the treatment effect estimate, 
leads to a smaller ICC, and, in some cases, improves model fit. Employing a matched-pairs design and 
modeling pairs lead to a useful gain in precision.    

Introduction 
The randomized control trial (RCT) is an important method for evaluating the effectiveness of school 
interventions. By randomizing subjects to treatment or control, we are able to obtain unbiased impact 
estimates. In school settings it is usually impractical to randomize lower-level units, such as students,  
to conditions. Instead, we use cluster randomized trials (CRTs), in which upper-level units, such as 
teachers, are randomly assigned to treatment or control. A CRT is an RCT and has the same benefits; 
however, because the unit of randomization is the upper-level unit, the effective sample size is the 
number of upper-level units. This has implications for statistical power and experimental design. If we 
are randomizing teachers but looking at outcomes for students, then the number of teachers becomes  
a strong determinant of the standard error of the impact estimate. Because locally-conducted experi-
ments sometimes either don’t have or cannot afford large numbers of teachers, strategies such as 
randomizing units within matched pairs become critical. This work, part of a larger research program  
on the use of experiments to inform local school district decisions, examines the effectiveness of this 
strategy for use with small-scale trials. The larger research program, funded by grant #R305E040031 
from the U.S. Department of Education, focused on methods for obtaining as precise estimates of 
program effectiveness as possible in situations where the researcher has to work with available 
samples. The primary goal was to answer questions about local program effectiveness as identified  
by districts, as opposed to recruiting large samples across districts that yield less relevant information 
for any one site. The problem investigated in this paper originated from this more general effort.    

The potential effectiveness of using a matched-pairs design has implications beyond the first concern 
to increase precision. In the experiments we consider in this study, teachers were actively involved in 
selecting the criteria by which they were paired up. They often made holistic and heuristic judgments 
about what factors affect performance and the order in which things matter. It is hard to say what the 
gains in precision are from these somewhat idiosyncratic ways of forming pairs; in particular, it would 
be hard to mathematically formulate or simulate this process because it is so non-uniform. (Normally, 
discussions of gains from blocking assume pairs are formed by taking adjacent units along some 
dimension that is assumed to be predictive of the outcome. In the experiments considered here, it is 
hard to determine what this composite dimension would be.) Nonetheless, we would like to know the 
net effect on precision of the pairing strategies used here.  

Teacher participation in establishing pairs has the benefit of involving teachers in the experimental 
process. The hands-on approach is both educational and may promote buy-in. However, it may also 
be unnecessary, burdensome, and costly, especially if it involves teachers in a process that fails to 
produce expected gains in precision. This work examines whether pairing increases precision in 
situations where experiments are small, where pairing is performed using multiple criteria in 
idiosyncratic but outwardly valid ways, and where teachers are directly involved in deciding what 
criteria to use in pairing up.  

Standard Errors of Impact Estimate from CRTs 
We start by considering the standard error for the impact estimate in a two-level experiment with 
randomization at level two. The formula motivates how we decide whether matching helps. The 
formula for the standard error of the estimate of the treatment effect (SE) from a CRT is a 
generalization of the formula for a one-level randomized trial, which allows for the fact that the 
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variance in the outcome and sample size exist at more than one level. Several authors give the 
expression for the standard error in two- and three-level experiments (Bloom, 2005; Bloom, Bos & 
Lee, 1999; Moerbeek, van Breukelen & Berger, 2000; Raudenbush, 1997.) 

In a two-level design, the SE for the impact depends on both the variance in outcomes among upper-
level units (e.g., teachers) and the variance among lower-level units (e.g., students) within upper-level 
units. The SE is usually highly dependent on the former of these. Mathematically, for a balanced 
design, the standard error for the treatment impact is proportional to the following quantity: 

nJJ

22 στ
+  

• J is the total number of upper-level units 

• n is the number of lower-level units per upper-level unit 

• Tau-squared is the between-teacher variance in average outcomes (the variance component 
for teachers) 

• Sigma-squared is the variance within teachers (the variance component for students) 

We note that the ratio of tau-squared to the total variance is called the intraclass correlation (ICC) 
(Hedges and Hedberg, 2006). The standard error increases as the ICC increases. This quantity is 
important to the current work because one way to assess whether matching works is to observe how 
the ratio of tau-squared to either the sum of tau-squared plus sigma-squared or the total variance (i.e., 
the ICC) changes as we introduce new effects in our models.  

Approaches to Reducing the SE of Impact Estimates from CRTs 
Several approaches are typically used to lower the standard error. The general goal is to shrink the 
variance components by estimating additional effects that account for the variability. For these 
methods to be successful, they have to more than offset the increase in the standard error that results 
from degrees of freedom being lost in order to estimate the additional effects (Raudenbush, Martinez 
& Spybrook, 2007). This tradeoff is especially problematic if there are relatively few randomization 
units, because there are few degrees of freedom to spare, as is the case in the experiments that we 
consider in this work.  

Next we review three commonly used strategies for lowering the standard error.   

Modeling Covariates 
The inclusion of covariates, especially a pretest, is a commonly used way to increase precision. 
With two-level designs, the individual student pretest scores or the teacher average of student 
scores can be used (Raudenbush, 1997; Bloom, Bos and Lee, 1999). Power calculations in two-
level designs often assume that the latter of these is being used (Raudenbush, Spybrook, Liu, & 
Congdon, 2006). Bloom, Hayes and Black (2005) empirically show the effectiveness of modeling 
the pretest at reducing the variance in the outcome.  

Modeling Fixed Effects 
A second way to stratify the analysis is to block on upper-level units such as schools or districts 
(Schochet, 2005). This essentially removes the between-block variance from the uncertainty 
contributing to the SE of the impact estimate. For instance, if we model schools, then the variance 
component for teachers will reflect variation among teachers within schools rather than within and 
between schools.  

Modeling Matched-Pairs 
This is a form of blocking. In a matched-pairs design, units of randomization are paired based on 
one or more criteria and randomization is performed within pairs (Bloom, 2005). The goal is to pair 
similar units together because it is only the variation between units within pairs (and that is not due 
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to treatment) that contributes to the SE for the impact estimate; the between-pair variance is 
eliminated from the equation. This form of blocking can be especially costly because almost half 
the degrees of freedom that could be used to estimate the impact are used to estimate pair effects.  

Bloom (2005) and Raudenbush, Martinez, and Spybrook (2007) show that a matched-pairs 
strategy can increase power in a CRT if the pairs of clusters are well matched. Also, matching will 
not be effective if the ICC is very small because there is little variation between groups to be 
removed by matching. Raudenbush, Martinez, and Spybrook (2007) set a minimum ICC of .05 for 
matching to be effective. An additional criterion for determining whether matching will be effective 
involves looking at how similar the members of pairs are on specific outcomes (Donner, Taljaard, & 
Klar, 2007; Raudenbush, Martinez, & Spybrook, 2007).  

Naive pair correlations and adjusted pair correlations are two statistics that are commonly used to 
check whether matching will be effective. The naive pair correlation is the correlation between 
group means within pairs. The adjusted pair correlation is the fraction of variance in “true” group 
means that is explained by matching (Raudenbush, Martinez, & Spybrook, 2007). 

In the current work, we will consider how well the third of these strategies, pairing, works both in 
combination with and separately from the first two strategies. 

An Approach to Measuring the Effectiveness of Matching 
We considered several ways of assessing whether pairing worked. One approach is to determine 
whether modeling pairs results in an improvement in model fit. A drawback of this approach is that 
modeling pairs may absorb much of the variance between units at the level of randomization (i.e., it 
may shift the variance to a level above the level of randomization). Although according to the formula 
given above, this will reduce the standard error, the reduction may not be accompanied by an 
improvement in fit. Also, improvement in fit may result from level-one variance (e.g., due to student 
variation within teachers) going down, but a reduction in this variance component may not affect the 
standard error much (i.e., in the formula for the standard error, this variance component is divided by 
the total sample size and so may not figure into a large reduction in the SE).   

Alternatively, we can consider whether pairing decreases the p value from a statistically non-significant 
to a significant level. A limitation of this approach is that if the effect is very small, pairing may be 
effective at reducing the teacher-level variance, and therefore increasing precision, but this might not 
drop the p value enough. 

To assess the effectiveness of pairing, we use two measures. The first measure is the change in ICC, 
or the change in the ratio of the between-teacher variance to the total variance. (We anticipate that the 
teacher-level variance will drop as we model combinations of (a) pretest, (b) pairs, and (c) fixed effects 
for upper-level units such as schools.) 

A couple of drawbacks to considering the ICC as a measure of whether pairing works are that (1) the 
SE is a standard deviation whereas the ICC is a ratio of variances so that changes in the ICC may not 
convey the degree of change in the SE; and (2) the ICC does not figure in the effect of losing degrees 
of freedom on the SE. For these reasons we also consider a second measure: the ratio of the SE after 
adjustment (i.e., after the application of each strategy for increasing precision) to the SE before 
adjustment, as a way to assess the success of matching.  

The purpose of this paper is to test how effective a matched-pairs strategy is for reducing the standard 
error of the estimate of treatment impact. We will use the results of 10 CRTs to answer this question. 
Importantly, the CRTs were relatively small – the median number of pairs is 10.5. The tradeoff 
between degrees of freedom lost and variance accounted for should figure in importantly here. The 10 
datasets give us the opportunity to empirically test the effectiveness of matching. We will answer this 
question per experiment as well as overall. If matching is effective, a secondary purpose is to 
determine whether it continues to be effective after the two other strategies for increasing precision 
noted above – modeling pretest and modeling fixed effects for schools – are used. If matching does 
not help after the pretest and fixed effects for upper-level units are modeled, then there is no point in 
using the strategy.   
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Method 

Data 
Over the last two years we carried out a number of group randomized trials, including the 10 analyzed 
here, to test the effectiveness of various educational interventions. Among these experiments, we 
have tested the effectiveness of graphing calculator technology, science curricula, and math 
interventions. A matched-pairs design was used in each of the experiments. Various matching criteria 
were used to establish the pairs. A summary of the criteria, as well as the number of pairs in each 
experiment, is given in Table 1. 

Table 1. Matching Strategy for 12 Projects 

Pairing Criteria in Order of Application Project 
Code 

Pairing 
by 

No. of 
Pairs First Second Third 

1 Teacher 11 Grade-level Bilingual or 
immersion 

Approach to 
classroom teaching 

2 Teacher 10 Grade-level Student group School 

3 
Class 
within 

teacher 
14 Teacher Class size 

- Behavior issues 
- Enthusiasm 
- Stronger academics
- Time of day for the  
 class period 

4 
Class 
within 

teacher 
9 Teacher Class size or 

achievement level  

5 Teacher 5 Grade-level Teaching experience  

6 Teacher 11 School Grade level  

7 Teacher 8 School Grade level  

8 Teacher 9 School Grade level Teaching experience 

9 Teacher 15 School Grade level Teacher preparation/  
training in math 

10 Teacher 32 
School/ 

grade-levela 
Grade level/          

teaching experience Teaching experience 

a This represents a composite of 4 experiments on the same intervention. 
 

Analysis 1 
The first analysis gives the descriptive statistics used as criteria for deciding if matching may be 
effective (as specified in Raudenbush, Martinez, & Spybrook, 2007). Results are provided for each of 
the 10 experiments.  

First, we examined the cluster level ICC of each experiment to judge whether it is worthwhile to adopt 
a matched-pairs design. Matched-pairs designs were considered inappropriate for experiments with 
ICCs less than .05 (Raudenbush, Martinez, & Spybrook, 2007). Second, we calculated the naive pair 
correlation and adjusted pair correlation for each experiment. We report the naive pair correlation 
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because it indicates whether the pairs are well matched. If the correlation is less than .40 or ICCs are 
less than .05, we coded the experiment as using an ineffective matched-pairs design.  

Analysis 2 
For each of the 10 experiments, we examined the extent to which modeling pairs reduces the ICC. We 
also examined changes in the standard error for the impact estimate as a proportion of the standard 
error before pairing.  

As noted above, we were also interested in whether modeling matched pairs reduces the ICC and the 
SE of the estimated treatment effect even after fixed effects for upper-level units (i.e., schools) and the 
pretest covariate are modeled. To answer this question we tested an expanded set of 12 models at 
each site. The specifications of the models are given in Table 2.  

Table 2: Effect Estimates at Each Level for Each of the 12 Models 

Model Pairs Upper-level unit 
(e.g., school) 

Pretest covariate 
(student level) 

Pretest covariate
teacher-level (or 

class-level)  

1     

2 X    

3  X   

4 X X   

5    X 

6 X   X 

7  X  X 

8 X X  X 

9   X  

10 X  X  

11  X X  

12 X X X  
Notes:  
Student-level and teacher-level intercepts were modeled as random in each model. Pair-level intercepts 
were also modeled as random. Upper-level intercepts were modeled as fixed. 
We can estimate the variance component for teachers and matched-pairs because we assume a 
constant treatment effect across pairs (Klar & Donner, 1997). 
In some cases SAS yielded an estimate of zero for the variance component, with no p value given – SAS 
imposes this constraint when the variance component is extremely close to zero. 
 

The results for the 12 models were averaged across sites. For the ICC’s we calculated the mean and 
median values. We computed the mean of the proportion change in the SE, though one could also 
weight the proportions by the precisions of the standard errors. 

All analyses were conducted using SAS proc MIXED (Singer, 1998). Following Singer and Willett 
(2003), we used full maximum likelihood estimation so that we could use the deviance test to compare 
models. 
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 Results 

Analysis 1 
Table 3 summarizes the statistics from each site that can be used to predict whether matching will be 
effective (the criteria were described earlier).  

Table 3: Descriptive Statistics for Matching Effectiveness  

Project 
Code 

No. of pairs ICCpre ICCpost Naive 
ρpair on 
pretest 

Naive ρpair 
on posttest 

Matching 

1 11 0.37 0.35 0.38 0.82 Effective 

2 10 0.29 0.27 0.62 0.61 Effective 

3 14 0.04 0.10 0.31 0.25 Ineffective 

4 9 0.26 0.37 0.95 0.65 Effective 

5 5 0.53 0.48 0.93 0.95 Effective 

6 11 0.07 0.07 0.38 0.38 Ineffective 

7 8 0.34 0.27 0.96 0.95 Effective  

8 9 0.06 0.12 0.44 0.17 Ineffective 

9 15 0.47 0.50 0.96 0.91 Effective 

10 32 0.61 0.48 0.92 0.95 Effective 
 

 

Analysis 2 
For each of the 10 experiments, we ran the 12 models described in the previous section. For each 
experiment, we established a profile showing changes in estimates of the variance components across 
the models. We show examples of the profiles for three experiments in the Appendix with Figures A1, 
A2, and A3. In these profiles we also tested for changes in fit of the models to the data; however, we 
stress that, in the event that a significant change in fit is observed, this does not necessarily mean that 
matching has been effective – improvement in fit can result from a drop in either the student-level 
variance or the teacher-level variance. With the former of these, the SE might not change much, with 
the latter, it does. The estimates of variance components also reveal, for example, whether there is 
any teacher-level variance remaining to be reduced through matching after modeling pretest and fixed 
effects.    
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The main results of Analysis 2 are displayed in two sets of figures. The first set, Figures 1, 2, and 3, 
display the average SE for the treatment impact as a proportion of the SE obtained without adjustment 
for pairing, blocking, or pretest. Figure 1 includes all 10 experiments. Figure 2 shows the same 
information but excluding the three experiments where matching was determined to be ineffective in 
Analysis 1 (i.e., using previously described criteria). Similarly, Figure 3 shows the same information 
but includes only those experiments where teachers did not use school membership as a pairing 
criterion. (For these experiments we would expect modeling fixed effects for schools to make a 
difference over and above pairing, for the other five schools the benefits of pairing and modeling fixed 
effects for schools are confounded because school membership is used as a matching criterion.)  
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Figure 1. The Effect of Pairing on Proportion Reductions in Standard Error of the Estimated 
Treatment Effect (Averaged over 10 Group Randomized Trials) 

 

 

These models 
include student-
level pretest as a 

covariate 

These models 
include teacher 

averages of 
student-level 
pretest as a 

covariate 

These models include fixed effects for schools 



EMPIRICAL EDUCATION RESEARCH REPORT  10

0

0.2

0.4

0.6

0.8

1

1.2

1 vs. 2 3 vs. 4 5 vs. 6 7 vs. 8 9 vs. 10 11 vs. 12

MODEL

St
an

da
rd

 E
rr

or
 a

s 
a 

Pr
op

or
tio

n 
of

 S
E 

in
 M

od
el

 1
WITHOUT PAIRING
WITH PAIRING

 
 

 

Figure 2. The Effect of Pairing on Proportion Reductions in Standard Error of the Estimated 
Treatment Effect (Averaged over 7 Group Randomized Trials) 
 

We see that blocking on pairs reduces the standard error when we average across studies. It is an 
effective strategy even after modeling the pretest and/or the fixed effects for upper-level units. This 
means that modeling fixed effects for schools and/or using pretest reduce the SE only by so much, 
and there is an added benefit to pairing. We observe this for outcomes displayed in Figures 1, 2, and 
3. (That is, limiting the analysis to experiments for which matching is expected to be effective, or to 
experiments where matching is not determined using school memberships as a criterion, does not 
seem to influence changes in precision as measured by the proportion change in the SE.)  
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Figure 3. The Effect of Pairing on Proportion Reductions in Standard Error of the Estimated 
Treatment Effect (Averaged over 5 Group Randomized Trials) 
 

To confirm the results shown in Figures 1, 2, and 3, we also computed the ICC and conditional ICCs 
for the 10 experiments for each of the 12 models. Figures 4 through 7 display ICC estimates in 
graphical form (Figures 5 and 6 show the same scatter except Figure 6 includes several arrows that 
trace changes of results for specific experiments.) Each point represents one experiment: the x-value 
is the ICC before pairing; the y-value is the ICC after pairing. In Figure 4, the points lie below the y=x 
line, which means the ICCs dropped as a result of pairing. In this figure we also see that modeling 
fixed effects resulted in the points shifting to the left, which means that this strategy also reduced the 
ICCs. Importantly, in spite of this leftward shift, the points remained below the y=x line, indicating the 
benefit of pairing over and above the modeling of fixed effects. (This study is not concerned with the 
variations in the leftward shift (i.e., variations in the benefit of modeling fixed effects) we therefore don’t 
link the sets of two dots that represent individual studies. Instead we look at the average degree of 
leftward shift.) 
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Note. In some cases points coincide, therefore fewer than ten white and black points are visible.  
Most of the overlap occurs at the origin. For example, in one study, the ICC was zero for all models. 

Figure 4. ICC’s for 10 Experiments With and Without Blocking Unadjusted for Pretest 
 

Figures 5 through 7 show the results of similar analyses except that in Figures 5 and 6, average 
pretest is modeled at the randomization level, whereas in Figure 7 pretest is modeled at the student 
level. With the effect of pretest figured in, the results are less dramatic than they were in Figure 4. 
Modeling pretest has the effect of dropping most of the ICCs to .10 or less. Also, the benefit of 
modeling fixed effects for schools is less conclusive – the leftward shift of points is less obvious. 
However, especially in Figure 7, it seems that the points are clustered below the line y=x suggesting 
that there continues to be a benefit due to pairing even after modeling pretest and / or fixed effects for 
schools. The effect is to further reduce what are already small values of ICCs. We note again that 
changes in SE relate more closely to the square root of the variance component in the numerator of 
the ICC so the changes depicted here to some extent underestimate the added value of pairing. (In 
some cases, the ICCs take on a zero value which is a constraint imposed by SAS when the teacher-
level variance components are extremely close to zero.)  
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Figure 5. ICC’s for 10 Experiments with and without Blocking Controlling for 
Pretest at the School Level 
 

 

 

Figure 6. ICC’s for 10 Experiments with and without Blocking Controlling for 
Pretest at the School Level 
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Figure 7. ICC’s for 10 Experiments with and without Blocking Controlling for 
Pretest at the Student Level 
 

We also summarize the ICC results in Table 4, by displaying the mean and median ICC values (across 
studies) for each of the 12 analyses. We see that pairing reduces the ICC with or without the other 
strategies; however the benefits are smaller once pretest is modeled because the pretest reduces the 
ICC by a large amount leaving little room for additional reductions in variability1.   

                                                      
1 The studies here reflect various interventions and outcome measures. We debated whether to display summary 
statistics for our analyses given the relatively small number of experiments and the range of materials that they 
cover (e.g., it is not obvious that average ICC’s from reading interventions are the same as those for math or that 
the success of the strategies described here would be the same for both subjects.) We decided to include them 
with the caveat that generalization from this study should be done carefully since the benefits described here may 
hold to different degrees depending on what the intervention is, and the averages shown may not apply to 
subdomains of results with bigger samples.  
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Table 4: Conditional and Unconditional ICC Estimates 
Model Pairs Upper-level 

unit 
(e.g., school) 

Pretest 
covariate 
(student 

level) 

Pretest 
covariate 

teacher-level 
(or class-level) 

Mean ICC 
(N=10 

studies) 
 

Median ICC 
(N=10 

studies) 
 

Minimum Maximum 

1     0.27 0.31 0.00 0.49 

2 X    0.04 0.03 0.00 0.11 

3  X   0.15 0.11 0.00 0.46 

4 X X   0.04 0.03 0.00 0.11 

5    X 0.06 0.03 0.00 0.27 

6 X   X 0.02 0.00 0.00 0.08 

7  X  X 0.02 0.02 0.00 0.07 

8 X X  X 0.01 0.00 0.00 0.04 

9   X  0.06 0.04 0.00 0.30 

10 X  X  0.01 0.01 0.00 0.08 

11  X X  0.03 0.01 0.00 0.10 

12 X X X  0.01 0.00 0.00 0.05 

 
 

Conclusion 
The ICC at the cluster level determines whether or not pairing can work. With a high ICC (which was 
the case in most experiments) we benefit from a matched-pairs design even if we have a small 
number of clusters. For some of the cases we considered, modeling pairs has value even after 
controlling for pretest and/or modeling fixed effects at the school level. It decreases the standard error 
of the treatment effect estimate, leads to a smaller ICC, and, in some cases, improves goodness-of-fit. 
The benefits of matching after modeling pretest are small because the variance that is left over, to be 
potentially further reduced through pairing, is already small. However, it does not hurt to model pairs – 
the gains outweigh the losses from using up degrees of freedom to model pair effects. For small 
experiments, any gain in precision is welcome. We conclude that teacher-recommended criteria can 
be an effective basis for matching, and recommend further use of this practice. 

Educational Importance 
Matching is an effective strategy for increasing the precision of the impact estimate if the ICC is large. 
This is true even when there are relatively few pairs. This can make the difference in deciding whether 
there is adequate power to proceed with an experiment. This applies especially to small-scale 
experiments designed to answer locally-relevant questions (e.g., within a single district). 

With this study we confirm empirically what Raudenbush, Martinez, & Spybrook (2007) demonstrated 
using a simulation study and thereby inform discussion about the value of CRTs in education.  

We also find, in some cases, that matching continues to work even after modeling pretest and fixed 
effects for upper-level units. This means that efforts to match are not wasted – they translate into a 
useful gain in precision. This, in turn, leads to more conclusive findings about the effectiveness of 
educational interventions. Our finding supports involving teachers in the matching activity, which, in 
addition to increasing precision, benefits teacher knowledge and potentially increases teacher buy-in. 
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It also supports the intuition that teachers are effective at judging and prioritizing the kinds of factors 
that affect student performance.    
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      Figure A1. Breakdown of Variance Components (Location 1) 
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       Figure A2. Breakdown of Variance Components (Location 2) 
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      Figure A3. Breakdown of Variance Components (Location 3) 

 
 


