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Background 

Efficacy studies of educational programs often involve mediator analyses aimed at testing 

empirically appropriate theories of action. In particular, in the studies of professional 

development programs, the intervention targets primarily teachers’ pedagogical sills and 

content knowledge, while the ultimate outcome is the student achievement measured by a 

standardized test. In this case, teaching practices affected by the professional development 

program in question can be measured in the process of classroom observation, as well as using 

one or more additional instruments including peer and stakeholder surveys. Using an 

observation instrument-rubric has a number of advantages. One such advantage is the 

immediacy of observation: it can be used to measure teacher practice at any moment in time, 

while surveys typically rely on a cumulative experience of survey takers. Another advantage is 

that a certain level of reliability can be achieved and maintained through rater training, 

certification, and calibration, which is seldom an option with surveys. Classroom observation 

can therefore produce series of reasonably accurate data points (scale scores) that could be 

included as mediator variables in the analyses of student outcomes.  

Researchers may face two types of problems when implementing observation-based approach to 

measuring the quality of a professional development program. First, an observation rubric 

consists of a number of items, which measure distinct observable aspect of teaching practice. 

These components need to be aggregated to produce a single metric or several composite scores, 

depending on the dimensionality of the underlying concept of teaching quality. Without some 

sort of aggregation, the task of mediation analysis using all rubric components can be 

intractable.1 A typical solution involves summation or averaging of element scores to obtain a 

single metric, which is often referred to as the observation score. However, the relative 

contributions of item scores to student outcomes in the short term can vary because some rubric 

items can be measuring aspects of teaching that do not translate directly into higher student 

                                                      

1 Most observation rubrics currently in use by researchers and administrators consist of at least one dozen 

separate items (called components, elements, or standards) grouped into several domains.  



scores in the nearest testing period. In addition, it is practically impossible to develop item 

definitions and scoring guidelines that would guarantee independence of each item and equal 

distribution of measurement error across items. Differences in the measurement error across 

items and correlations among item scores also affect the contribution of each item to the total 

variance of observation data.  

Second, observation item scores are ordinal ratings, designed primarily to assess teaching 

practices, rather than measure student outcomes in a precise way. Observation scores are 

therefore not necessarily related to student test scores and test-based teacher value-added in a 

linear fashion, even if they reflect meaningful inputs into student outcomes. Some recent 

findings such as the asymmetry in the distribution of observation scores (Tennessee Department 

of Education, 2012; <other REFs>) and the analyses performed in the framework of Measure of 

Effective Teaching (MET) project (Kane and Staiger, 2012) suggest possible non-linearity in the 

relationship between observation and value-added scores. With few exceptions (Grossman et al., 

2010; Kane et al., 2010), little research has been conducted on the item-level relationships 

between observation and student outcomes or value-added measures of teacher effectiveness.  

 
Current Study 

The main objective of this study is to develop a methodology for creating summative teacher 

performance metrics from item scores for use as mediators in the analyses of student outcomes. 

We use one particular observation rubric, PLATO (PLATO, 2014), to answer the question of how 

a summative teacher performance metric, aligned with a selected measure of student 

achievement, can be constructed from item scores.  

The main requirement for a summative metric in the context of mediator analysis is that it 

combines item scores in a way that maximizes the correlation between the set of teacher 

performance indicators (rubric items) and student outcomes. A metric that is poorly aligned 

with the outcomes variable(s) is statistically inefficient: it may prevent detecting a mediating 

effect even when sample size is expected to be sufficient to detect the effect on student 



outcomes. Simple ad hoc approaches currently in use, such as summation of item scores, result 

in indicators that have low correlations with student achievement metrics. Whereas growing 

methodological literature on the measurement of teacher effectiveness tends to focus on the 

robustness of value-added models (Ballou 2005; Jürges and Schneider, 2007; McCaffrey et al., 

2008; Harris, 2008; Braun et al, 2010) or optimal combinations of component scores in multi-

measure teacher evaluation systems (Hansen et al, 2013; Mihaly et al, 2013) little attention has 

been paid to the statistical properties of observation metrics per se. In this study, we develop 

several alternative composite metrics of teacher performance and compare their statistical 

properties. 

Statistical Model  
In the context of an experimental study of a program that affects student achievement 

indirectly, such as a professional development program, we may be interested in estimating the 

impact of the program,, on teacher performance, T, and the contribution of teacher 

performance, as we all other possible covariates, on student outcomes:  

Y1 = Y0 + X + T(; Z)  + ,       (1) 

where Y1,0 are student outcomes (e.g. test score) before and after the intervention,  is the 

treatment indicator, X is the vector of student characteristics, Z is the vector of teacher 

characteristics, , , and  are coefficients to be estimated. Teacher performance may be a single 

holistic score or a vector of observable teacher performance aspects (observation rubric item 

scores), so that 𝑇 =  ∑ 𝑇𝑗
𝑁
𝑗=1 , N  1. 

In this specification, teacher performance function, T(; Z), allows for any shape of relationship 

between its inputs and the performance metric(s), as well as differential impact of each 

component of teacher performance. For practical purposes, some simplifying assumption about 

T(; Z) have to be made. One approach could be to treat every observation rubric item as a 

direct measure of a distinct teacher’s skill, as in Kane et al (2010), and to estimate the mediating 

relationship for each item score independently. In practice however, this task may be intractable 

as an experimental study may not be sufficiently powered to estimate a model with a large 



number of mediators-observation rubric items. Moreover, high correlations among items 

(component scores) of observation rubrics reported in many recent studies (e.g. Chaplin et al., 

2014; Lazarev et al., 2014) suggest that such items can be considered as partially complementary 

proxies for overall teacher quality rather than indicators of distinct skills with unique 

contributions to student outcomes. It is therefore desirable to have a single metric of teacher 

performance that efficiently aggregates the teacher performance information inherent in 

individual observation items.  

Rearranging the terms in equation (1) and noting that Y1 – Y0 – X = Ŷ is the definition of 

teacher value-added (denoted hereafter Ŷ) obtains:  

T(Z) ~ Ŷ          (2) 

This implies that, in the research context considered here, an empirical approximation of the 

teacher performance function, T, needs to be correlated with the teacher value-added metric 

derived from the outcome of interest. In other words, we need to calibrate an observation 

instrument applying a regression technique to extant observation and student outcome data.   

In practical applications, we can assume that the empirical summative metric of teacher 

performance is a sum of observation components - item scores, sj - or some transformation of 

those scores, possibly non-linear: 

 T = fj (sj)          (3) 

A representation of T needs to be chosen so as to maximize the correlation between T and the 

value-added metric Ŷ in a sample of calibrating observations. In the following, we consider 

several alternative approaches to constructing transformation functions, fj, and compare 

properties of the resulting summative metrics.  

The most straightforward and frequently used approach is to use a simple sum of item scores, 

or their average (which is statistically equivalent), and a perform a simple (univariate) 

regression analysis: 

Ŷ i =  sji + i           (4) 



Technically, this involves substituting all functions fj in (3) with an identity function: fj = I. 

Another approach is to perform a linear regression analysis2 and obtain an approximation of the 

form:  

Ŷ i =  sjibji + i         (5) 

A version of the approach above, applicable in a situation where more than one distinct 

dimension of teacher quality can be identified, involves performing factor analysis first and 

using factor scores, k in the subsequent regression analysis:  

Ŷ i =  ki bki + i, where k (1,K), K < N       (6) 

A linear regression model can be extended to a polynomial regression by inclusion of powers 

(squares, cubes, etc.) of items scores in an attempt to model inherent non-linearity: 

Ŷ i =  Pji (sji) + i         (7) 

Finally, generalized additive function approach allows defining the most accurate and complete 

representation of T. Under this approach, each of the fj(sj) terms in (3) is an arbitrary smooth 

function (transformation) of item scores. Estimate a generalized additive model 

Ŷ i =fji (sji) + i          (8) 

using penalized spline smoothing (Wood 2006) allows determining the optimal degree of 

smoothing and therefore the true shape of the relationship between student outcomes and f(s). 

It also allows identifying items that do not contribute at a statistically significant level to the 

summative indicator either because they are measured with too much statistical noise, 

“crowded out” due to multiple correlation with other items, or unrelated to the outcome of 

interest in principle, at least in the short run.  

                                                      

2 More generally, it could be a mixed model if available data allows modeling rater and/or school effects.   



Analysis of functional terms fj (sj) may help understand the relationship between teacher 

performance and student outcomes. However, non-parametric nature of these terms makes it 

difficult to use them for prediction. In practice, most non-parametic smooth curves can be 

approximated by polynomials and the generalized additive model can be used to define an 

optimal polynomial or linear regression model by relying on the estimated degrees of freedom 

(e.d.f.)—a measure of non-linearity—reported for each term in the generalized model.  

Each of the approximations obtained by methods (4) – (8) can be used to calculate composite 

scores for use in mediator analysis.  

Data Collection and Analysis  

The dataset we used to develop the methodology and to estimate the summative observation 

score for PLATO was created in the framework of MET project. As part of this project, several 

hundred high-quality video recordings of upper-elementary and middle-school lessons in ELA 

were scored by observers trained in the use of PLATO. Eight PLATO components-elements (out 

of 13 defined by the protocol) were used in coding (Table 1). The dataset also contained value-

added scores for the teachers featured in the videos calculated from the student performance 

data (see Kane et al., 2012, for details). The total number of observations (scores) per item was 

1504. 



 

 

Analysis was performed using R package mgcv (Wood, 2006) and involved estimation of a 

generalized additive model. The principal output of this procedure (see an example in Figure 1) 

is a plot of the functional relationship (“smooth”) between two quantities (in this case, an 

observation item score and the value-added score) together with the confidence bands, 

estimated degrees of freedom (e.d.f.) for the smooth, proportion of explained dispersion, and 

other relevant statistics. Introspection of the plots together with assessing the estimated degrees 

of freedom allows making a decision about an appropriate parameterization of the relationship. 

The estimated degree of freedom is a measure of non-linearity. If its value is close to one, then 

the relationship is linear or possibly non-existent if the statistical significance of the estimate is 

low), while higher degrees imply that the relationship is non-linear. In some cases non-

monotonic relationship (e.g. U-shaped) implies that a particular item does not have an 

unambiguous effect on outcomes even though the relationship is technically significant. 

Analysis of an estimated generalized additive model allows developing a simpler parametric 

approximation by replacing non-parametric “smooths” with linear terms or low-order 

polynomials based on the e.d.f. values, thus moving from a model of type (8) to an adequately 

specified model of type (5) or (7). These types of models are easier to interpret and can be used 

to calculate a composite observation score.  



 

  



Findings  

In the following, we present the 

results of estimation of models 

(4)-(8) and compare the models in 

terms of goodness of fit (R2). The 

simplest model (4)—a univariate 

regression of value-added score 

against observation total (sum of 

all observation item scores) 

presented in Table 2—provides a  

useful baseline, with the R2 

of .026. A complete linear 

regression (Table 3) has a 

much higher R2 of .042. 

However most terms in it 

are not significant. 

Limiting the model only to 

significant terms results in 

a model with only a 

marginally smaller R2 of 

0.040 (Table 4).3        

 

 

                                                      

3 In fact, adjusted R2 of the reduced model is higher than that of the complete because of the smaller 

number of terms: .038 vs. .036. 

 



 

A linear regression model with factor scores instead of raw item scores (Table 5) performs not 

much better than the baseline model (R2 = .028). This is a result of the incomplete set of items in 

the data and limited proportion of common variation accounted for the model.4   

 

 

                                                      

4 Factor model used here recovers two of the four theoretical factors identified by the developers 

of PLATO: Instructional Scaffolding (includes SUI and MDLG), and Classroom Environment 

(based on BEMT and TIME). Three remaining items present in the MET data are associated with 

a single factor, with RoC largely unexplained by the model (uniqueness = .98).See <AERA paper 

mentioned by Lindsay> on the factor structure of PLATO. 



Our most advanced results based on the generalized additive function approach—type (8) 

model—are summarized in Table 6 and Figure 2.  

 

Graphs in Figure 2 reveal a variety of patterns of relationship between component scores and 

teacher value-added, similar to what we have reported elsewhere using other observation 

instruments (Lazarev & Newman, 2013). Two components—MDLG and CLDI—exhibit non-

monotonic relationship to the outcome. One of them—Modeling (MDLG)—has a significant 

inverted U-shaped relationship to the outcome (ignoring the range above ~3.0 where only a few 

observations are located). This pattern of relationship suggests that teachers’ performance has an 

optimum in the middle, whereas deviations towards either tail of the distribution of MDLG 

scores are associated with poorer student performance. Two more items—BEMT and INCH—

have monotonic relationships with a moderate degree of non-linearity. Three remaining 

domains—Roc, TIME, and SUI—had strictly linear but insignificant associations with the 



outcome (signified by e.d.f. of 1 and high p values in Table 6). Thus model is the strongest of all 

with R2 of 0.053, probably a maximum of explained variation that can be achieved by any 

model. 

 

 

Analysis of this model allows specifying an efficient polynomial model without much 

exploratory analysis. First, we remove items that are insignificant in the model: Roc, TIME, and 



SUI. Then for each remaining item, we include item itself and its powers up to rounded e.d.f. For 

example, e.d.f. for MDLG is 3.78, which is approximately four; we therefore include square, 

cube, and the fourth degree of MDLG into the model. After initial estimation, the model is 

refined by the elimination of statistically insignificant power terms. The resulting model (Table 

7) has R2 of 0.051, which makes it almost as good as the generalized additive model thanks to its 

ability to reproduce the complexities of the relationships between observations cores and 

student outcomes. At the same time, this is a parametric model that can be easily used to 

calculate composite scores from data.       

 

 

Discussion 

We have outlined a number of approaches to constructing summative teacher performance 

metrics for the purposes of program evaluation studies, in particular for mediator analyses.  

The intermediate steps involving estimation of a generalized additive model or factor analysis 

are fairly data intensive and requires large number of observations (hundreds to thousands) in 

the calibrating sample. Once an optimal metric is constructed the sample size requirements for a 



program evaluation study are moderate. Proposed methods of summative score development 

help to increase the accuracy of the analysis substantially and lower the sample size 

requirements. The sample size is approximately inversely proportionate to the effect size, and 

the effect sizes (R) in the best models reported here are almost twice as large as those of the 

baseline model with the sum of item scores. The decision, as to which model to use, lies with the 

researcher in a particular study, and it has to do mostly with the tradeoff between complexity 

and accuracy. This decision is particularly difficult in case when a non-monotonic relationship is 

identified: on one hand, ignoring such a relationship would result in a biased and inefficient 

model. On the other hand, using an observation score as a mediator of the program effect that 

has itself an ambiguous relationship to the outcome of choice, creates problems for the 

interpretation of the results. In a simpler case of monotonic, albeit non-linear relationships, a 

choice in favor of a more complex model can be clearly justified by the benefit of a higher model 

quality.  
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