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1. Purpose. 2. A Motivation for Investigating this Problem.
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> - Table 2. Moderating Effect of English Proficiency on the Impact of Treatment X
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One motivation for studying this problem is our finding, across several locally-conducted 400 Confidence | on CST Algebra

group randomized trials, that the estimate of the interaction between student-level covariates o / e Standard

and treatment reaches statistical significance even when the average impact IXE . tandar
effects Estimate error DF

estimate does not. o P —
utcome for the non-English proficient
)50 control with an average pretest 293.93 24.68

We often find that the primary concern of a local
education agency conducting a group
randomized trial is to measure differential
impacts of an intervention on specific student
populations in their local settings. If differential
impacts can be detected readily with relatively
small experiments, there is support for the
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One example is illustrated in the following tables and graph from a randomized trial on a
. technology intervention for Algebra. Although we detected an interaction with English 200 Change in outcome for each unit- 27 91 153

general program described by Newman (2008) proficiency, we were concerned that our estimate was not conservative enough—that it \ / increase on the pretest

for mounting such trials. Our goals are: 5

1) To address power considerations in ;etgigtsgrgggggilzr;t}iloiug ;O ttel:z: ﬁ:]-fza)mphng of students only, and not the re-sampling of the Not Proficient Proficient gci)nnutsrcrzlc)?g?ouﬁ%grigei:\e?hcee éELlnt%lgrr;\gmﬁdent 1350 3 79
detecting differential impacts for student - '
subgroups in cluster randomized trials. Effect of Treatment X for non-English -3.94 12.48

2) To empirically examine whether the average proficient student
difference in performance between subgroups of
interest does not vary across clusters. This
condition is important for obtaining added

power to detect differential impacts between the Unadjusted Control 294.26 43.11 453 28 13 Random Standard

- _ 0 -
subgroups. effect size Treatment X 290.23 45.90 279 20 8 007 | 329 effects Estimate error Zvalue

3) It this condition holds in the experiments | i N} 135 96 N oo
examined, to consider the implications for Adjusted Control 294.26 43.11 The same sample is used in both 096 8399 Teacher mean achievement . . .

small-scale cluster randomized trials that address effect size Treatment X 282.81 45 90 calculations. ' Within-teacher variation 972.11 52.17 18.63
differential impacts for student subgroups of
local concern.

Table 1. Overview of Sample and Impact of Treatment X on CST Algebra
Average difference (English proficient 210.13

Standard No. of No. of No. of Effect Percentile minus not proficient) in the effect of
Condition Means  deviations students classes teachers size standing Treatment X

5.87

Note. For.05<p value<.15, we conclude that we have some confidence that the effect observed is not due to chance only.

3. The MDES for Differential Impacts 4. Modeling Result. 5. Empirical Results. Jable3.>ignincance Level of the Random Effect

SUbg FOUPS (gray box indicates that this effect is not estimated

. : : : : for the experiment)
We obtain a generalized expression for the standard error (expanding on We examined whether subgroup ® English

Bloom’s (2005) derivation): shiSeitaa iy e i Nd iN= M LiRd: Il Fxperiment Intervention Randomization Gender  Proficienc Pretest SES
fOHOWing table we show the Math technology 24 classes (17

significance levels of the estimates of (Grades 7-9) students per class)

Assume that there are n students per cluster and J clusters. Assume that the  variance, @ among  units ?ég‘g;‘fﬁg)’gram gt8u(c: gzigsp(;fdass)
n/2 students are in each of two subgroups (e.g., boys and girls) in each randomized, in the average difference Reading program 30 teachers/classes 39

cluster. Assume that J/2 clusters are randomized to each of two in performance between subgroups (Grades 3-5) (5 students per
conditions. (the u,,’s discussed above). This is randomization unit)

taken from a sample of ei ght Science program 92 teachers (22 37
: . : : : (Grades 3-5) students per teacher) y
Consider a model of performance of student 1 in cluster j (for schools in experiments that we have conducted. ,
o Science program 16 teachers (23 09
one of the two COHdlthﬂS.) (Grades 3-5) students per teacher) )

Versus Average Impacts.

Bloom (2005) notes that we have greater power to detect differential impacts
than average impacts of the same size, when the subgroups of interest are
below the level of randomization. This is because the differential impact
estimator “differences away” the cluster error component and thereby
eliminates the uncertainty due to between-cluster differences in average
performance. The following figure shows the ratio of the MDES (minimum
detectable effect size) for a differential effect, to the MDES for an average
effect, holding other parameters constant. There is a power advantage for
detecting differential etfects when the value of the ratio is less than 1.

Ratio of the Minimum Detectable Effect Size (MDES) for the : ..
Differential Impact for Student Subgroups to the MDES for the Net Impact V= B, + BliSMij +uy isM.. + uy; +e, We establish emplfICaUY that, at Math technology 10 teachers (58 16 N

least 1n some cases, the wvariance (Grades 9-12) students per teacher)
Math program 30 teachers (14
(Grades 3-6) students per teacher) 37 .02 37

>

Number of students per . : : : : :
randomized unt isM 1s an indicator of subgroup membership. across schools in the average

=30 . . - - .
e 3,1s the grand average of performance for subgroup isM, =0. difference in performance between g Reading program 30 teachers (4 38 01 14

n=200 3, 1s the cross-school average difference in performance between student subgroups is not statistically (Grades K-3) students per teacher)

Subgroups isM. =0 and isM.=1. signiﬁcant. This result SUppOrts *the maximum likelihood procedure does not yield an estimate (this indicates that the model is too complex [Singer and Willett, 2003] which often implies
] g that the random effect is too small to warrant estimation.)

u,; 1s the school-specific deviation in average performance for subgroup Bloom’s model which assumes that | | | .
isM, =0. there is no variation among schools in the average difference in performance between subgroups. Under this condition we have more

u,; is the school-specific deviation in the difference in subgroup power to detect differential effects among subgroups of students than average effects of the same size.

MDES (for differential impact) /
MDES (for average impact)

performance from the cross-school average of this ditference.

01 05 03 04 | ¢;1s the student-specific error term (Var(e,)= 6°).

If we assume that the variance in the estimate of the average subgroup
difference 1s the same in both conditions, then under this model, we

We observe that the ratio depends on the sample size of students in the obtain the following expression for the variance of the differential impact 6 StatiStiCal ISSU@S aﬂd ImplicatiOnS.

randomization units and the ICC, but not on the number of randomization estimate: | | | |
units. The advantage for detecting the differential impact (ratios below 1) is ’ : 1) Effect sizes for differential effects — how big or how small?
observed for values of the ICC that are frequently found. For example, with Var( A (istx =1)— A (istx = 0)) = 4] ar(u,;) 40 ] 2) Student moderators — student-level or upper-level effects?
n=30, this advantage happens for ICC>0.1. The advantage for detecting the J nJ
differential impact that is illustrated holds only under certain conditions. I£

will not hold if the average difference in performance between subgroups We see that:

Intraclass correlation coefficient (ICC)

Implications for doing Small Scale Trials:
This work provides support for a strategy of conducting relatively small experiments to answer questions of local interest to a school

district (Newman, 2008). Small and less expensive experimental program evaluations focused on moderating effects can provide more

zs not constant across randomized clusters. Theretore, we are interested in < d . . .. . . L . .
h : 1 for the standard f tfl Jifferential X 1) Uy; 18 differenced dway | valuable information to decision makers than large-scale experiments intended for broad generalization, which cannot provide
€ MO genetal CXpression 10T the stalidale CHoT 10T the i [ctehtia) inpac 2) if the subgroup effect is not constant across upper level units then the confirmatory evidence for all interactions of interest to schools. These results suggest a strategy for investments in effectiveness

estimate, where we don’t assume a constant average difference between - - - a1 - . L .
’ 5 power calculation for detecting differential impacts needs to figure in research that builds up broader generalizations from smaller scale studies focused on local needs.

subgroups. this additional source of variation
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