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Abstract 

In this work we demonstrate that estimates of differential program impact from comparison group 

designs that evaluate differences in outcomes for subgroups of individuals are less prone to selection 

bias. First, we argue for the importance of the routine evaluation of moderated impacts. Second, using 

formal and graphical arguments, we show that under specific conditions, cross-site comparisons of 

performance gradients across subgroups lead to cancelation of bias from site-specific third variable 

confounds. This means we can expect a reduction in standard selection bias resulting from differences 

between study and inference site in average performance; however, cross-site comparisons can 

introduce bias due to cross-site differences in the subgroup performance gradient. To examine this 

tradeoff in biases, we apply Within Study Comparison methods to obtain estimates of Root Mean 

Squared Bias from six studies, and empirically evaluate levels of each form of bias. We conclude that 

accuracy of estimates of subgroup differences in impact from comparison groups studies are less prone 

to bias overall. By yielding results with limited bias, routine analysis of moderated impacts using quasi-

experiments can help broaden our understanding of the conditions under which programs are more 

effective.     
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Introduction 

The main question in an impact evaluation is whether a program achieves average positive impact for the full 

study sample. Studies are powered to address this question, and evidence reviews, such as by the What Works 

Clearinghouse in education (WWC, 2020) are based on them. In spite of their primacy, an obvious limitation to 

full-sample marginal impact estimates is that they do not automatically apply to subsamples. For example, the 

impact of a program averaged across students in the lower and upper half of the distribution of incoming 

achievement may not be accurate for either subgroup. To obtain more nuanced information about the 

robustness of a causal effect across conditions and individuals, it is necessary to evaluate differential effects as 

well as subgroup impacts. Tests of differential effects are especially important for indicating whether different 

subgroups receive the same level of benefit from a program, whether an average impact quantity generalizes 

to an inference population, and for understanding the potential of a program to close an achievement gap. 

Study designs that are used to evaluate average impacts are also used to test for differential impacts.  The 

Randomized Control Trial (RCT) is the preferred design for addressing both quantities. Quasi-experimental 

designs (QEDs) may be used when experiments are not feasible. A standard QED is the non-equivalent 

comparison group design (CGD) (Shadish, Cook, & Campbell, 2002), in which outcomes for a treatment group 

are compared to those from an ostensibly similar comparison group.     

The main limitation to QEDs is the potential for results to be biased from selection, which experiments rule out 

by design. With CGDs, this bias occurs when we fail to account for differences between the program and 

comparison groups in compositional characteristics that affect outcomes. Conditions for bias in QEDs have 

been studied extensively, yielding design- and analysis-based strategies for addressing it (Bloom, 

Michalopoulos, & Hill, 2005; Cook, Shadish, & Wong, 2008).   

In this work we make the case that estimates of differential impact from CGDs are less susceptible to selection 

bias from certain sources than estimates of average impact based on the same design. Specifically, we focus on 

the biasing role of confounders known as third variable confounds (Cook, Shadish, & Wong, 2008), or “macro 

variables” (Hotz, Imbens, & Mortimer, 2005). Such variables take different constant values in the program 

group and the comparison group. Unlike variables at the individual level, which allow person-to-person 

matching of similar cases, macro factors—such as locations across which the QE comparison is made—are 

wholly different between treatment and comparison groups.  We argue that with CGDs, tests of differential 

impact across subgroups of individuals are not subject to biasing effects of macro variables in ways that 

estimates of average impact are.  

We begin the work by arguing why it is important to evaluate differential impacts.  We then discuss the role of 

QEDs as an alternative to randomized experiments for evaluating average and differential causal effects of 

programs. After this we make our main assertion of this work and develop the argument graphically and 

algebraically. This step leads to expressions for bias in QED-based estimates of differential impact. Focusing on 

outcomes in education, we use these expressions to empirically evaluate levels of bias across several studies. 

We end the work by drawing some conclusion.  



         

Background 

REASONS WHY IT IS IMPORTANT TO EVALUATE DIFFERENTIAL PROGRAM IMPACTS 

The presence of effect heterogeneity has been demonstrated across multiple impact evaluations in education. 

Several studies have provided useful summaries of the levels of this variation, including a comprehensive 

meta-analysis of RCTs and QEDs of educational technology interventions (Cheung and Slavin, 2012), a 

synthesis of findings from a series of multisite trials of educational programs (Weiss et al., 2017), and in a 

review of multiple rigorously conducted experiments (Jaciw et al., 2016). Given that average impact quantities 

are observed to often vary with contexts and attributes of beneficiaries, it is important to study the conditions 

for and implications of impact heterogeneity for research and practice. We consider several motivations for 

investigating differential effects especially as they arise through effects of moderators. 

Evaluating Differential Program Effects Helps Us To Establish Boundary Conditions For Observing 

Impact  

Examining whether impacts vary across individuals and contexts is important because it prevents us from 

overgeneralizing average impact quantities to specific subgroups. If impact for boys is -1 and impact for girls is 

+1, then an average effect finding of zero holds little value for either subgroup. Reporting just average effect 

findings obscures underlying differences.  

More generally, one can say that full-sample average impact findings from experiments are useful for 

summarizing the net benefit of a program; however, these results are vague. Grand mean positive impact 

findings from an experiment demonstrate that a program can work under some circumstances, but tell us little 

if anything about for whom and under what conditions impacts are likely to be observed (Bryk, 2014). Tests of 

differential effects unpack the average impact finding, allowing us to evaluate the moderating effects of 

individual or contextual characteristics on program impact.  

Knowledge of Differential Impacts Supports Models of Generalizability  

Moderator analyses are critical to several long-standing as well as emerging approaches to generalizing results 

from experiments. The first, “Heterogeneity of Replication” approach (Cook, 2002; Shadish, Cook, & 

Campbell, 2002) considers factors that moderate impact to be threats to stable main effect generalizations. The 

second, reweighting methods (e.g., Tipton, 2013; and described in Schochet, Puma, and Deke, 2014), adjusts 

grand mean impact findings from experiments for differences between study and inference populations in the 

distribution of moderators of impact. A third method, G-Theory (Cronbach, Rajaratnam, & Gleser, 1963; 

Shavelson & Webb, 2008), focuses on making explicit the interactions between the treatment and attributes of 

study participants and of contexts as a basis for drawing generalization.  While the three methods are 

fundamentally different in terms of quantities supporting generalization, they all rely on moderator effects to 

establish the extent to which grand mean impact findings generalize.  



         

Tests of Differential Impact Support Decisions 

The correct question for evaluating if a program selectively benefits one group more than another is whether 

the difference in impact between subgroups is statistically significant, and not whether the impact is 

statistically significant for one group but the other (Gelman and Stern, 2006). This information, along with local 

data about subgroup baseline performance, and the proportions of individuals in each of the subgroups, can 

inform judgements about whether a program is increasing or closing an achievement gap. In turn, this tells us 

about how a program apportions benefits, and whether it is even possibly harmful for subsets of the inference 

population.  Based on this information, stakeholders can decide whether to retain, modify or discontinue a 

program. 

A Note About The Feasibility of Evaluating Differential Impacts  

While it is important to evaluate differential impacts for several reasons, including those above, there remains 

the question of the feasibility of doing so. Before continuing with this work, it is important to briefly address 

three potential objections.     

A first concern is that differential impacts are normally either very small, or too small to matter. To address 

this, we note that both laboratory social experiments (Cronbach, 1975) and field experiments (Jaciw & Lin, 

2020; Cheung & Slavin, 2012; Edmunds et al., 2012; James-Burdumy et al., 2010; Weiss et al., 2017) have shown 

that in evaluations of educational programs differential effects across subgroups of students often approach, 

and sometimes exceed, magnitudes of average impact. A second concern is that even if differential impacts are 

substantive, power to detect them may be low, especially in experiments designed to detect average impacts. 

We address this by clarifying the assertion. Both theoretical and empirical works addressing factors 

influencing precision of average and differential effects estimates from RCTs (Jaciw et al., 2016; Bloom, 2005; 

and Spybrook, Kelcey, & Dong, 2016) show that when clusters such as school are randomized, power to detect 

differential impacts across subgroups of individuals within clusters (e.g., students or teachers) may be 

adequate with study designs powered to detect average impacts.  On the other hand, it is harder to achieve 

adequate power to detect differences in impact across subgroups of the randomized clusters themselves.  In 

this work, we are concerned with the former case; that is, with differences in impact across subgroups of 

individuals that are identified within each site. A third possible concern is that there are usually many more 

moderator effects to examine than main effects, and after applying multiple comparison adjustments, power 

for detecting any given differential effect will be low. This is a legitimate point, but the problem and its 

solution apply equally to any situation involving multiple comparisons, including when evaluating a series of 

average impacts. The goal should be to evaluate a modest number of contrasts. This concern reminds us of the 

need for a disciplined and economical selection of moderators. A small number of moderators selected a-priori 

for investigation on the basis of either theory or policy priorities addresses the problem of too many contrasts.  

 In sum, questions concerning differential impacts of programs for subgroups of individuals are important to 

address for several reasons. Further, in the context of evaluations in education, these differential impacts are 

often large enough that they can be evaluated with adequate power and precision using common experimental 



         

designs. These reasons give impetus to better understand the potential of different study designs to support 

accurate inferences concerning differential effects. The current work addresses this point.  

USE OF QUASI-EXPERIMENTS TO EVALUATE AVERAGE AND DIFFERENTIAL IMPACTS 

RCTs are the first choice for evaluating both average and differential program impacts. Randomized 

experiments, when conducted well and with intact samples, allow us to estimate average and subgroup 

impacts with high internal validity. However, when randomized experiments are not feasible, QED’s may be 

used instead to estimate similar quantities (Shadish, Cook, & Campbell, 2002).  

As noted earlier, a principal type of QED is the CGD. With this design, the goal is to find comparison cases 

that represent a valid counterfactual group to individuals receiving treatment. That is, the comparison cases 

are chosen strategically to warrant the strong ignorability assumption (Rosenbaum & Rubin, 1983). In other 

words, the comparison group should be selected, and confounders of treatment identified and their effects 

controlled for, so that there remain no hidden factors that influence both selection into treatment and the 

outcome. If present, such factors would bias the estimate of the causal effect of treatment that involves a 

comparison of outcomes for the two groups.       

While the conditions for achieving unbiased QED estimates are easy to state in principle, they are not 

guaranteed to be satisfied in practice. Over the past several decades, a body of work has been dedicated to 

empirically exploring bias in QED estimates by evaluating their capacity to replicate benchmark results from 

experiments. These efforts, collectively known as Within Study Comparison (WSC) studies, typically start with 

an experimental benchmark estimate of average impact. They then test the conditions under which QEDs yield 

results that approximate the benchmark quantity. Often this involves evaluating whether non-experimental 

comparison groups, that are selected judiciously using different strategies, can replicate how the actual 

controls perform in order to yield the benchmark experimental result. 

WSC studies have produced detailed results and guidance for designing QEDs that yield internally valid 

results.1 An important finding that is especially salient to this work is the potential for QEDs to be biased from 

effects of what are called “third variable confounds” (Cook, Shadish, & Wong, 2008), also described as “macros 

factors” (Hotz, Imbens, & Mortimer, 2005). These are “variables whose values are constant within a location, or 

at least within sub-locations” (Hotz, Imbens, & Mortimer, 2005, p. 248). The uniqueness of values of macro 

variables to individual sites presents a problem for CGD designs that involve making comparisons across sites. 

For instance, if the treatment group is at Location 1 and the comparison group is from Location 2, and the sites 

are wholly different on a basic variable that affects outcomes, then it is impossible to adjust for the biasing 

effect of this fundamental confound. That is, common support is lacking to permit matching individuals across 

 

 

1 We refer the reader to thorough summaries in Bloom, Michalopoulos, and Hill (2005); Cook, Shadish, and Wong (2008); Glazerman, Levy, and Myers 

(2003); and Wong, Valentine, and Miller-Bains (2017). More recent WSC studies include Bifulco (2012); Dong and Lipsey (2015); and Hallberg, Cook, 

Steiner, and Clark, (2016).  



         

locations. In a sense, the locations are the individuals, and there are only two of them—one in treatment and 

one in control.   

Consider an example from education. Schools consist of individuals at multiple levels. There are students, 

teachers, and the administration, often headed by one principal. If comparing two sites, we may find ranges of 

overlap on student pretests, and teacher experience levels. However, with only two schools, any baseline 

covariates affecting outcomes at the school level are fully confounded with site. An example of a macro 

variable is the management style of the principal. We have information for only N = 2 administrators, one at 

the treatment site and one at the untreated comparison site. If we try to establish performance for the 

counterfactual to treatment at one site using the performance of students who have not experienced treatment 

at the other site, the comparison will be completely confounded with characteristics of principals. That is, in 

our estimation we will not be able to de-confound the treatment effect from the “principal effect.”       

To address the role of macro variables, WSC studies have emphasized the need to match locally (Bloom, 

Michalopoulos, & Hill, 2005), which helps to ensure that the treatment and comparison groups are similar or 

constant in terms of possible macro variables, including unknown factors. As an analytic solution, Hotz, 

Imbens, and Mortimer (2005) propose using multiple locations to support model-based adjustments for effects 

of location level characteristics. We return to this important point later in this article. 

OUR ASSERTION 

We argue in this work that differential impact quantities from QEDs that involve cross-site comparisons of 

performance gradients are less prone to selection bias than average impact quantities that involve the same 

cross-site comparisons but of average performance outcomes. Specifically, when there is a reliance on cross-

site comparisons to estimate both average and differential impact, the latter estimate is less prone to selection 

bias attributable to macro factors.   

In the next section: (a) we present our argument for why estimates of differential impact from QEDs are less 

prone to selection bias than estimates of average impact; (b) we apply a WSC-based approach to empirically 

test the assertion, and (c) we consider implications and applications of the result. As we go through these 

steps, we demonstrate how certain common statistics used with cluster randomized experiments may be 

reinterpreted for understanding bias in the context of WSC studies.  

A Model for Evaluating Bias in Effect Estimates Involving Cross-Location Comparisons 

We motivate our argument graphically and through an impact model. 



         

 

 

In Figure 1, we represent impact quantities at two locations (L0 and L1). At L1 the average impact is 𝑌(𝑇) −

𝑌(𝐶) and at L0 it is 𝑌∗(𝑇) − 𝑌∗(𝐶).  At L1, the subgroup impacts are 𝑌(𝑇𝐴) − 𝑌(𝐶𝐴) and 𝑌(𝑇𝐵) − 𝑌(𝐶𝐵) for 

subgroups A and B, respectively.  At L0, they are 𝑌∗(𝑇𝐴) − 𝑌∗(𝐶𝐴) and 𝑌∗(𝑇𝐵) − 𝑌∗(𝐶𝐵). We represent true 

values at each site, and assume they could be estimated without bias through a randomized experiment.    

Next, consider the scenario where we lack information about the control outcome, 𝑌(𝐶), at L1. Assume that 

under a CGD, we substitute the corresponding value, 𝑌∗(𝐶), from L0, for the counterfactual to treatment at L1. 

Bias in the difference estimate used to infer impact at L1 is: 

𝐵𝑖𝑎𝑠(1) = 𝑌(𝑇) − 𝑌∗(𝐶) − [𝑌(𝑇) − 𝑌(𝐶)] = 𝑌(𝐶) − 𝑌∗(𝐶)      (1) 

This is a standard expression for bias in comparison-group designs evaluated through WSC studies. That is, 

bias is expressed as a difference in average performance across untreated groups (Bloom, Michaolopoulos, & 

Hill, 2005; Heckman, Ichiumra, & Todd, 1997). 
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Next, assume our goal is to measure the differential impact across subgroups A and B at L1. For example, our 

goal may be to evaluate whether impact for subgroup A (e.g., for males) is different than impact for subgroup 

B (e.g., females) at that location. We would like to estimate the following quantity:  

Δ𝐴−𝐵 = 𝑌(𝑇𝐴) − 𝑌(𝐶𝐴) − [𝑌(𝑇𝐵) − 𝑌(𝐶𝐵)]        (2) 

Assume that, as in the previous case, we lack information about control performance (i.e., performance in the 

absence of treatment) at L1.  We can rewrite the quantity in Equation 2, as: 

Δ𝐴−𝐵 = 𝑌(𝑇𝐴) − 𝑌(𝑇𝐵) − [𝑌(𝐶𝐴) − 𝑌(𝐶𝐵)]        (3) 

Under a non-equivalent comparison group design, we replace the gradient in control group performance at L1 

with the corresponding quantity at L0 (as we did earlier with the average impact quantity): 

Δ𝐴−𝐵
∗ = 𝑌(𝑇𝐴) − 𝑌(𝑇𝐵) − [𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵)]        (4) 

Bias in this expression is as follows:  

𝐵𝑖𝑎𝑠(2) =  Δ𝐴−𝐵
∗ − Δ𝐴−𝐵 = (𝑌(𝑇𝐴) − 𝑌(𝑇𝐵) − (𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵))     (5) 

−(𝑌(𝑇𝐴) − 𝑌(𝑇𝐵) − (𝑌(𝐶𝐴) − 𝑌(𝐶𝐵)) 

= (𝑌(𝐶𝐴) − 𝑌(𝐶𝐵)) − (𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵)) 

This expression, like the one in Equation 1, involves outcomes only for untreated groups at each location.  

Next, we show how macro effects persist in Bias(1) when comparing mean outcomes across locations, but 

cancel in the expression for Bias(2) when comparing mean performance gradients between subgroups across 

locations. To do so, we develop our model slightly further. First, we assume that a common macro effect, Q, 

differentiates performance across locations for both subgroup categories:  

𝑌(𝐶𝐴) = 𝑌∗(𝐶𝐴) + 𝑄           (6) 

𝑌(𝐶𝐵) = 𝑌∗(𝐶𝐵) + 𝑄           (7) 

If subgroups A and B are mutually exclusive and exhaustive of samples at L0, and at L1, we can express 

average control performance at each location as: 

𝑌(𝐶) = 𝜋𝐴𝑌(𝐶𝐴) + (1 − 𝜋𝐴)𝑌(𝐶𝐵)         (8)  

𝑌∗(𝐶) = 𝜋𝐴
∗𝑌∗(𝐶𝐴) + (1 − 𝜋𝐴

∗)𝑌∗(𝐶𝐵)         (9) 

Next, we rewrite Bias(1) using these terms:   

𝐵𝑖𝑎𝑠(1) = 𝑌(𝐶) − 𝑌∗(𝐶)          (10) 

= [𝜋𝐴𝑌(𝐶𝐴) + (1 − 𝜋𝐴)𝑌(𝐶𝐵)] − [𝜋𝐴
∗𝑌∗(𝐶𝐴) + (1 − 𝜋𝐴

∗)𝑌∗(𝐶𝐵)]  

= [𝜋𝐴(𝑌∗(𝐶𝐴) + 𝑄) + (1 − 𝜋𝐴)(𝑌∗(𝐶𝐵) + 𝑄)] 

−[𝜋𝐴
∗(𝑌∗(𝐶𝐴)) + (1 − 𝜋𝐴

∗)𝑌∗(𝐶𝐵)] 

= [𝜋𝐴𝑌∗(𝐶𝐴) + 𝜋𝐴𝑄 + 𝑌∗(𝐶𝐵) + 𝑄 − 𝜋𝐴𝑌∗(𝐶𝐵) − 𝜋𝐴𝑄)] 



         

−[𝜋𝐴
∗𝑌∗(𝐶𝐴) + 𝑌∗(𝐶𝐵) − 𝜋𝐴

∗𝑌∗(𝐶𝐵)] 

= [𝜋𝐴𝑌∗(𝐶𝐴) + 𝑄 − 𝜋𝐴𝑌∗(𝐶𝐵))] − [𝜋𝐴
∗𝑌∗(𝐶𝐴) − 𝜋𝐴

∗𝑌∗(𝐶𝐵)] 

= 𝑄 + [(𝜋𝐴 − 𝜋𝐴
∗)𝑌∗(𝐶𝐴)] − [(𝜋𝐴 − 𝜋𝐴

∗)𝑌∗(𝐶𝐵)] 

= 𝑄 + (𝜋𝐴 − 𝜋𝐴
∗)(𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵))       

Bias(1) reflects the macro variable Q plus the standard subgroup confounding effect that exists if there is 

difference between locations in proportions of the subgroups, (𝜋𝐴 − 𝜋𝐴
∗), and a difference between subgroups 

in their average performance 𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵) ≠ 0.  Bias from macro effect Q persists, even if we adjust for 

effects arising from the imbalance between locations in the distribution of subgroups A and B. 

Next, we rewrite 𝐵𝑖𝑎𝑠(2) in similar terms (substituting quantities in Equations 6 and 7 into Equation 5): 

𝐵𝑖𝑎𝑠(2) =  Δ𝐴−𝐵
∗ − Δ𝐴−𝐵          (11) 

= [𝑌(𝐶𝐴) − 𝑌(𝐶𝐵)] − [𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵)] 

= [𝑌∗(𝐶𝐴) + 𝑄 − (𝑌∗(𝐶𝐵) + 𝑄)] − [𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵)] = 0    

In this scenario, the macro effect, Q, is differenced away. Also, the quantity is, by definition, stratified by 

subgroups A and B. This eliminates the additional confound due to a possible difference between conditions in 

the distribution of the subgroups, which was observed in Equation 10.2  

How Do We Interpret These Results in Terms of the Graphic Representation?  

 𝐵𝑖𝑎𝑠(1) can be represented as the difference in heights of 𝑌(𝐶) and and 𝑌∗(𝐶) in Figure 2. We can decompose 

this into two components: (a) the average vertical displacement of the quadrilaterals (the macro effect), and (b) 

the difference in heights of 𝑌(𝐶) and 𝑌∗(𝐶)  attributable to difference between locations L0 and L1 in the 

proportion of individuals belonging to subgroups A compared to B. This imbalance is represented by the solid 

vertical line being placed further to the right at L1 representing a larger proportion of cases in subgroup A in 

L1 compared to L0. 

 

 

 

2 There may of course be imbalance on other individual-level factors. For example, we might have a covariate with value 𝑋𝑖,𝐿0 for a given individual i at 

L0, and 𝑋𝑗,𝐿1 for a given individual j at L1. We can write each of these quantities as the per location mean of the variable plus the deviation in the 

individual score from its respective mean:  𝑋𝑖,𝐿0 = (𝑋𝑖,𝐿0 − �̅�𝐿0) + �̅�𝐿0 for the person at L0, and 𝑋𝑗,𝐿1 = (𝑋𝑗,𝐿1 − �̅�𝐿1) + �̅�𝐿1 for the person at L1. �̅�𝐿0 and  �̅�𝐿1 

are macro variables specific to sites and would be integrated into bias Q. Bias may still exist from differences between the shapes of distributions of 

(𝑋𝑖,𝐿0 − �̅�𝐿0) centered around mean �̅�𝐿0, and of (𝑋𝑗,𝐿1 − �̅�𝐿1) centered around mean, �̅�𝐿1. For instance, the variance or skew in the distributions of 

individual scores around their respective site means may be different for the two locations.  



         

 

 

MODELING A MORE REALISTIC SCENARIO 

Under the simplified scenario considered above, Bias(2) does not depend on the displacement of the 

quadrilaterals. That is, the macro effect, which is represented as the overall vertical distance between the 

quadrilaterals, is differenced away.  

A more realistic scenario assumes that the gradient in performance between subgroups A and B is not constant 

across locations. That is, we can assume the variance in the gradient in performance between subgroups across 

sites or clusters – referred to as the “moderator gap variance” (Spybrook, 2013) – is not zero. This is a fair 

assumption, with non-zero values of variance in the performance gradient across sites observed in educational 

experiments (Jaciw et al., 2016).   

 The value of the gradient is specific to the site; therefore, it is a macro effect. We model the difference between 

locations in the gradient in control performance across A and B as follows, with the macro value K determining 

the non-constant slope in achievement between subgroups across locations:  
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𝑌(𝐶𝐴) = 𝑌∗(𝐶𝐴) + 𝑄           (12) 

𝑌(𝐶𝐵) = 𝑌∗(𝐶𝐵) + 𝑄 + 𝐾          (13) 

In Appendix A we show that in this scenario the expressions for 𝐵𝑖𝑎𝑠 (1) and 𝐵𝑖𝑎𝑠(2) are as follows:  

𝐵𝑖𝑎𝑠 (1) = (1 − 𝜋𝐴)𝐾 + 𝑄 + [(𝜋𝐴 − 𝜋𝐴
∗)𝑌∗(𝐶𝐴)] − [(𝜋𝐴 − 𝜋𝐴

∗)𝑌∗(𝐶𝐵)]     (14) 

𝐵𝑖𝑎𝑠(2) =  Δ𝐴−𝐵
∗ − Δ𝐴−𝐵 = −𝐾         (15) 

Bias(1) is the same as before, with an additional term involving macro effect K. Bias(2) is now non-zero, also 

reflecting the macro effect for location differences in performance gradients across subgroups. If the gradients 

are constant across sites, then 𝐾 = 0 and the quantities reduce to the former ones (Equations 10 and 11).  

We can interpret this in terms of the graphical representation (Figure 3.) To simplify, we assume a balanced 

distribution of individuals across subgroups A and B between locations (we have equal displacement of the 

solid vertical lines within each quadrilateral), which sets the value in square brackets in Equation 14 to zero, 

allowing us to focus on the macro effects K and Q. 
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In this scenario, the difference between subgroups in control performance at L1 is flat (i.e., zero slope). At L0 

this gradient in performance is positive (as before, in Figures 1 and 2). The vertical displacement between 

quadrilaterals in the bottom-left vertex (i.e., average performance for controls assuming all cases at each site 

belong to B (i.e., 𝜋𝐵 = 1 or equivalently 𝜋𝐴 = 0) is Q + K (consistent with Equation 14 above.)) As the 

proportion of cases in A increases and the proportion in B decreases, the solid vertical lines slide to the right. In 

the expression for 𝐵𝑖𝑎𝑠(1), the quantity Q remains constant, but the contribution of K becomes discounted by 

factor (1 − 𝜋𝐴).  𝐵𝑖𝑎𝑠(1) sums to (1 − 𝜋𝐴)𝐾 + 𝑄. If at both sites all members belong to A, the first terms 

becomes zero and 𝐵𝑖𝑎𝑠(1) is just Q. 

𝐵𝑖𝑎𝑠(2) is simply the difference between the slope of the control gradient at L1 (which is flat and has value 0) 

and the slope of the control gradient at L0, which is K. 𝐵𝑖𝑎𝑠(2) is 0 − 𝐾 = −𝐾.             

The main idea in the examples above is that the difference in performance gradients between conditions across 

locations is subject to a “differencing away” of certain location-specific effects. The macro effect represented by 

the displacement of the quadrilaterals (Q) does not enter into the expression for 𝐵𝑖𝑎𝑠(2). Only the macro factor 

influencing the performance gradient across locations (K) contributes to this bias. However, the difference in 

average performance between conditions across locations, is subject to the biasing effects of both macro effect 

Q, which is not differenced away, and a factor of macro effect K.  

The potential for error terms to be differenced away is well understood in the context of difference-in-

difference analyses. The current application resembles the situation in cluster-randomized experiments where 

cluster-level random effects are differenced away when estimating the difference in program impact between 

subgroups of individual, and therefore do not contribute to the standard error for the estimate of the 

differential effect (Jaciw et al., 2016; Bloom, 2005; Spybrook, Kelcey, & Dong, 2016).     

METHODS: EVALUATING BIAS IN CROSS-SITE COMPARISONS OF PERFORMANCE GRADIENTS 

Our goal is to evaluate levels of bias in CGS-based estimates of differential impact that depend on calculating 

the difference in performance gradients between conditions across locations (L0 and L1). A second goal is to 

compare this bias in estimates of moderated impact to bias in estimates of average impact that also involve 

comparing outcomes across locations.  

WSC Methods 

To address these goals, we use a version of the Within Study Comparison (WSCs) methodology. As described 

earlier, the method is normally used to evaluate discrepancies between experimental and comparison-group-

based estimates of average impact.  

With WSC methods, the difference between the comparison group-based average impact quantity and the 

experimental benchmark reduces to a difference in average performance between the comparison and control 

groups (Heckman, Ichimura, & Todd, 1997; Bloom, Michalopoulos, & Hill, 2005). The difference between these 

quantities across two locations is as follows (we repeat Equation 1 here for ease of reference):  

𝐵𝑖𝑎𝑠(1) = 𝑌(𝑇) − 𝑌∗(𝐶) − [𝑌(𝑇) − 𝑌(𝐶)] = 𝑌(𝐶) − 𝑌∗(𝐶)      (16) 



         

We showed earlier that bias in a differential impact quantity that relies on a comparison of performance 

gradients across conditions and locations also reduces to a contrast between locations in quantities measured 

exclusively among controls (we repeat Equation 2 here for ease of reference): 

𝐵𝑖𝑎𝑠(2) =  Δ𝐴−𝐵
∗ − Δ𝐴−𝐵 = [𝑌(𝐶𝐴) − 𝑌(𝐶𝐵)] − [𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵)]     (17) 

A central feature of WSC studies is their choice of comparison group. The earliest WSC studies, which were 

conducted using experiments in jobs training (Fraker & Maynard, 1987; Lalonde, 1986), used survey-based 

outcomes from untreated individuals. Later studies used more proximal comparison cases, including eligible 

nonparticipants who resided in the same narrowly-defined geographic regions as the program applicants (e.g., 

Heckman, Ichimura and Todd, 1997). One variant of the WSC method, which we refer to as the “multisite 

version”, takes advantage of experiments conducted at multiple sites. With this version, the benchmark 

experimental impact at a given inference site is compared to the impact quantity that results from substituting 

control performance for that site with control performance from a different site (or combination of sites) from 

the same trial. Controls used for the substitution effectively serve as a non-experimental comparison group for 

the inference site (Jaciw, 2016; Bloom, Michalopoulos, & Hill, 2005; Wilde & Hollister, 2007). As with all WSC 

studies, the difference between comparison-group-based and benchmark impact quantities estimates bias in 

the former quantity. With the multisite version of WSC, bias reflects selection into sites. Taking this approach 

one step further, we can also accommodate cluster randomized experiments, where units such as schools are 

randomized to conditions. A given control cluster serves as the unit of inference. One or more other schools 

assigned to control yield the non-experimental counterfactual.3  We adopt this approach in the current work.  

SELECTING BENCHMARK AND COMPARISON CASES AND SUMMARIZING BIAS IN THE MULTI-SITE TRIAL VERSION OF 

WSC 

In a given trial, we can arbitrarily select any site as the “inference site” that furnishes average control 

performance 𝑌(𝐶), and designate controls from one or more other sites as constituting the comparison group, 

which yields the non-experimental counterfactual outcome 𝑌∗(𝐶).  

 

 

3 In a multisite trial, study participants randomized to control within a site are a random sample of all study participants at that site. Therefore, their 

performance is the same, on average, as the average performance for all participants at that site in the absence of treatment. This means the difference 

between sites in average performance of individuals randomized to control (in the case of a multisite trial) is in expectation the same as the difference 

between the full sites in their average performance if each is randomized as a full cluster to control (i.e., in the case of a cluster randomized trial).  

More formally, with cluster randomized trials, for a cluster j randomized to control (T=0), the expected value of the outcome yij over students i (i.e., the 

outcome averaged over all students in the control school) is as follows: 𝐸(𝑦𝑖,𝑗=1|𝑇 = 0, 𝑗 = 1). This quantity is the same as the expected value of control 

performance within that cluster where students have been randomly assigned to treatment or control within that cluster (i.e., in the case of a multisite 

trial with random assignment of students at the site): 𝐸(𝑦𝑖∈𝑇=0,𝑗=1|𝑗 = 1).  The expected value of the difference in control outcome between two clusters, 

where full clusters are randomly assigned to control (for cluster randomization), or a random subset of students within each cluster assigned to control 

(for within-site randomization of students)  is also the same:  𝐸(𝑦𝑖,𝑗=1|𝑇 = 0, 𝑗 = 1) −   𝐸(𝑦𝑖,𝑗=2|𝑇 = 0, 𝑗 = 2) = 𝐸(𝑦𝑖∈𝑇=0,𝑗=1|𝑗 = 1) − 𝐸(𝑦𝑖∈𝑇=0,𝑗=2|𝑗 = 2).   



         

With N possible inference sites, we have (
𝑁
2

) unique pairs of sites to draw comparisons of type 𝑌∗(𝐶) − 𝑌(𝐶) 

or Δ𝐴−𝐵
∗ (𝐶) − Δ𝐴−𝐵(𝐶). Bias from unique pairings can be expressed as 𝑌𝑖(𝐶) − 𝑌𝑗(𝐶), 𝑖 ≠ 𝑗 for comparisons of 

means and Δ𝑖,𝐴−𝐵(𝐶) − Δ𝑗,𝐴−𝐵(𝐶) , 𝑖 ≠ 𝑗  for comparisons of subgroup performance gradients across sites.  

To summarize bias through a measure of central tendency, we can look for an average over all differences; 

however, if biases are centered on zero, a straight average will obscure the magnitude of bias (Bloom, 

Michalopoulos, & Hill, 2005). Instead, we can take an average over absolute values of differences for all unique 

pairs of sites across which control performance is compared: 
1

(
𝑁
2

)
∑ |𝑌𝑖

∗(𝐶)𝑖≠𝑗 − 𝑌𝑗 (𝐶)|. This expresses average 

absolute bias in the impact quantity that is based on cross-site comparisons. Similarly, 
1

(
𝑁
2

)
∑ |∆𝑖,𝐴−𝐵

∗ (𝐶)𝑖≠𝑗 −

∆𝑗,𝐴−𝐵(𝐶)| is the average absolute bias in the measure of differential impact that uses between-site comparisons 

in performance gradients between subgroups A and B. 

A somewhat different approach to summarizing bias stems from the recognition by Bloom and colleagues 

(2005) that in many WSC studies, the discrepancy 𝑌𝑖(𝐶) − 𝑌𝑗(𝐶) over multiple pairs is centered on zero, and 

therefore, may be considered a form of random error. They label this “non-experimental mismatch error”. The 

error reflects non-random selection of individuals into sites across which comparisons are drawn. We can 

similarly define non-experimental mismatch error for performance gradients between subgroups.  

We express mismatch error from discrepancies between benchmark- and comparison-groups-based average 

performance as: √
1

(
𝑁
2

)
∑ (𝑌𝑖

∗(𝐶) − 𝑌𝑗(𝐶))2
𝑖≠𝑗  .  

Similarly, we express mismatch error from discrepancies between benchmark and comparison-group-based 

performance gradients as: √
1

(
𝑁
2

)
∑ (∆𝑖,𝐴−𝐵

∗ (𝐶) − ∆𝑗,𝐴−𝐵(𝐶))2
𝑖≠𝑗  .  

A small modification of these expressions for mismatch error, allows us to summarize absolute levels of bias in 

more familiar terms. That is, we can summarize discrepancies across sites in average outcomes (or in 

performance gradients between subgroups) using familiar variance expressions. To do this, instead of 

comparing control outcomes from one site against control outcomes from just one other site, as we do in the 

expressions for mismatch error above, we can compare control outcomes for each site against a measure of 

central tendency for the outcome. Corresponding expressions to those above are as follows: 

𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) = √
1

𝑁
∑ (𝑌𝑖

∗(𝐶) − �̅�(𝐶))2
𝑖 = √𝜏0(𝐶)        (18) 

for means, and 

𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) = √
1

𝑁
∑ (∆𝑖,𝐴−𝐵

∗ (𝐶) − ∆̅𝐴−𝐵(𝐶))2
𝑖 = √𝜏1(𝐶)       (19) 

for gradients.  



         

𝜏0(𝐶) is the variance across clusters in average performance of controls; 𝜏1(𝐶)is the variance across clusters in 

the control group performance differential between the subgroups (i.e., it is the variance in the slope of the 

moderator variable that identifies the subgroups). RMSB stands for “Root Mean Squared Bias”.     

EXPRESSING THE MAGNITUDE OF BIAS IN TERMS OF USEFUL METRICS 

The variance expressions above allow us to summarize the discrepancies between sites in average 

performance, or in performance gradients, in terms that are common to experimental evaluations. We consider 

three metrics.  

1. Standardized Mean Squared Bias 

First, we express RMSB quantities in the metric of the standardized effect size: 

For means: 

𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡)

√𝜏0(𝐶)+𝜎𝐶
2

= √
𝜏0(𝐶)

𝜏0(𝐶)+𝜎𝐶
2 = √𝐼𝐶𝐶(𝐶)         (20) 

For gradients: 

𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓)

√𝜏0(𝐶)+𝜎𝐶
2

= √
𝜏1(𝐶)

𝜏0(𝐶)+𝜎𝐶
2 = √𝜓(𝐶)         (21) 

These expressions involve two quantities common in the literature on cluster randomized trials. The first is the 

intraclass correlation coefficient (ICC) indicating the proportion of total variability in outcomes attributable to 

between-cluster differences. The second quantity, 𝜓, is the random variance in the moderator gap across 

clusters, or “moderator gap variance ratio” (Spybrook, 2013). It is the variability in the gradient in performance 

between subgroups across clusters also expressed as a proportion of total variance in the outcome.4 Here we 

express these quantities among controls only. 

Expressing RMSB in the metric of a standardized effect size allows us to compare average bias in QED-based 

average or differential effects relative to familiar benchmarks. For instance, a standardized effect size of .20 

may be considered substantial, and quantities as low as .05 can represent a meaningful difference (Bloom, Hill, 

Black, & Lipsey, 2008).  

2. Relative Mean Squared Bias 

A simple extension of (1) is to show the RMSB values in relation to each other through a ratio: 

𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡)

𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓)
= √

𝜏0(𝐶)

𝜏1(𝐶)
           (22) 

 

 

4 The ICC is normally seen as an important parameter in calculations of statistical power for multilevel experimental designs. In this work, we consider 

an alternative interpretation of the statistic; that is, as a metric for bias in QED-based impact estimates obtained through cross-site comparisons. 



         

3. Root Mean Squared Bias as a Proportion of Average Impact 

A third approach is to express RMSB relative to the magnitude of impact or differential impact. If average 

effects are normally larger than differential effects, then it makes sense to scale average absolute bias as a 

proportion of the magnitude of each effect. The expression for means is: 

𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡)

(𝑌(𝑇)̅̅ ̅̅ ̅̅ ̅−𝑌(𝐶))̅̅ ̅̅ ̅̅ ̅̅ =
√𝐼𝐶𝐶(𝐶)

(𝑌(𝑇)̅̅ ̅̅ ̅̅ ̅−𝑌(𝐶))̅̅ ̅̅ ̅̅ ̅̅ /𝑠𝑑
=

√𝐼𝐶𝐶(𝐶)

𝐸𝑆(𝑎𝑣𝑔)
         (23) 

While for gradients it is: 

𝑅𝑀𝑆𝐵(𝑑𝑖𝑓𝑓)

Δ𝐴−𝐵̅̅ ̅̅ ̅̅ ̅̅ (𝑇)−Δ𝐴−𝐵̅̅ ̅̅ ̅̅ ̅̅ (𝐶)
=

√𝜓(𝐶)

[Δ𝐴−𝐵̅̅ ̅̅ ̅̅ ̅̅ (𝑇)−Δ𝐴−𝐵̅̅ ̅̅ ̅̅ ̅̅ (𝐶)]/𝑠𝑑
=

√𝜓(𝐶)

𝐸𝑆(𝑑𝑖𝑓𝑓)
       (24) 

In the empirical part of this work, we express RMSB using the first and third of the three metrics considered 

here.  

We can also relate these expressions to the models for bias from macro factors introduced earlier. Assuming 

that in our analysis we adjust for imbalance across locations in the distribution of characteristic A (which 

happens by necessity in calculating the achievement gradient) thereby eliminating the term in square brackets 

for Bias(1) in Equation 14, the expressions for RMSB can be written in terms of the macro effects K and Q. For 

means we have: 

𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) = √
1

𝑁
∑ (𝑌𝑖

∗(𝐶) − �̅�(𝐶))2
𝑖 = √𝜏0(𝐶) = √𝑉𝑎𝑟((1 − 𝜋𝐴)𝐾 + 𝑄)    (25) 

For gradients we have: 

𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) = √
1

𝑁
∑ (∆𝑖,𝐴−𝐵

∗ (𝐶) − ∆̅𝐴−𝐵(𝐶))2
𝑖 = √𝜏1(𝐶) = √𝑉𝑎𝑟(𝐾)      (26) 

Standardized Mean Squared Bias Adjusting for Effects of Macro Variables 

A further question concerns the extent to which 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓)  are reduced by adjusting for 

effects of macro variables.  

The strategy is based on the idea of Hotz, Imbens, and Mortimer (2005) that biasing effects of macro variables 

may be reduced through model-based adjustments that account for differences across locations in the 

distributions of those variables.  This is consistent with WSC approaches that attempt to account for bias by 

adjusting impact estimates for effects of confounders, which in case are at the site level. In the empirical part of 

this work we explore the effects of such adjustments on 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) .  

RESEARCH QUESTIONS 

We address the following questions: 

1. Based on up to 12 outcomes across six studies, what are the values and medians of estimates of 

𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) expressed in standardized effect size units (quantities in Equations 20 

and 21, above)? 



         

2. What are the values and medians of estimates of  𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) when expressed as 

proportions of average or differential impact (quantities in Equations 23 and 24, above)? 

3. Our third question is concerned with a proof of concept because we are able to apply it to Study 1 only. 

We ask: to what extent are 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) reduced by adjusting for effects of macro 

variables?   

Data 

We addressed the research questions using data from six randomized experiments in education. Details of the 

studies are included in Table B1 of Appendix B. They include RCTs of programs addressing: reform-based 

math science and technology, second-language development, English language development, math skills with 

a focus on algebra, and language development of lower-performing readers. Outcomes were assessed using 

established instruments including state tests and performance measures developed by testing agencies. For 

several of the programs we evaluated impacts on more than one outcome, yielding up to 12 datapoints.       

ESTIMATION: HIERARCHICAL LINEAR MODELS 

To estimate the relevant quantities, we applied Hierarchical Linear (HL) models using methods described in 

Raudenbush and Bryk (2002) and Singer (1998). We used SAS PROC MIXED (2008) to obtain estimates of the 

variance components and of average and differential impact.   

Our first research question is about comparing the relative magnitudes of 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) 

expressed in standardized effect size units (quantities in Equations 20 and 21). We used limited conditional 

models, in which the moderator of interest is the only covariate, to estimate the site-level variance components. 

We addressed separately two moderators: gender and socioeconomic status based on Free or Reduced-Price 

Lunch eligibility. To estimate 𝜏0, which is the main quantity in the expression for 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡), we used the 

following limited conditional model:  

ijjijjij Mtreatmenty  ++++= 210          (27) 

Here i indexes students, and j indexes the macro unit (e.g., school), yij is the outcome variable, jtreatment

indicates treatment assignment status (coded 1 if assigned to treatment, and 0 if assigned to control), ijM is a 

dummy variable indicating whether student i in macro cluster j belongs to one subgroup category or the other 

(e.g., for the analysis involving gender, 1 for males and 0 for females), j is a random effect at the macro level, 

and ij is a random effect at the student level. We estimate 𝜏0 through 𝑉𝑎𝑟(𝜐𝑗). 

To estimate 𝜏1, which is used in the expression for 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓), we used the following limited conditional 

model: 

ijijjjijjsijjij MMtreatmentMtreatmenty  ++++++= *210      (28) 



         

This model is like the previous, but with two additional terms, one for the interaction between the moderator 

ijM  and the dummy variable for treatment, and a random term, 𝜈𝑗,  representing the cluster-level deviation of 

the difference in performance between categories of M, from the grand mean of this difference. We will 

estimate 𝜏1 through 𝑉𝑎𝑟(𝜈𝑗). 

We include the moderator as the only covariate in the impact model (Equation 27) to allow a fair comparison 

of quantities. That is, the calculation of the differential impact in Equation 28 automatically stratifies the 

analysis by levels of moderator, ijM ; therefore, we must similarly adjust impact in Equation 27 to “net out” the 

effect of the moderator. If not, then the cross-site variance in ijM may inflate our calculation of bias.5  

Our second research question is about comparing the magnitudes of 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) with 

corresponding values of average and differential treatment effects (quantities in Equations 23 and 24). To 

estimate the average and differential impact quantities using ANCOVA we adopted more-fully conditional 

models which are identical to the limited conditional model described above, but include a series of macro-level 

covariates.6,7  

Our third research question is about the extent to which 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) are reduced by 

adjusting for effects of macro variables. We used limited conditional models, with minority status as the 

moderator, and then examined changes from modeling effects of different sets of macro-level (i.e., site level) 

variables. They included site-aggregate levels of the variables listed in Table C.1 in Appendix C, in specific 

combinations: (1) student-based macro variables, (2) teacher-based macro variables, (3) locale-based macro 

variables, (4) a combination of student and teacher-based macro variables, and (5) a combination of student, 

teacher and locale-based macro variables. We then repeated the process with gender as the moderator. We 

 

 

5 Up to this point we have considered estimating variance in control performance 𝜏0(𝐶) and in the control gradient between subgroups in performance 

𝜏1(𝐶). The differences are assessed between control groups at different sites. In the empirical part of this work, we use variance quantities available from 

the studies, which are based on outcomes for treatment and control members combined: 𝜏0 and 𝜏1.  It is possible that variances assessed across both 

conditions are larger than if assessed in the control condition only (this would be the case if differences in treatment program implementation vary.) In 

that case, the variance components that we use will inflate bias by some amount. However, if control performance also varies depending on differences 

in what the counterfactual programs are, or from differences in implementation of a dominant counterfactual program, then we might expect 𝜏0 ≈ 𝜏0(𝐶) 

and 𝜏1 ≈ 𝜏1(𝐶). For the one study (Study 1) where were able to assess variation across sites by condition, we found similar values. For instance,  �̂�0 =

237.22, and �̂�0(𝐶) = 223.46, while estimates of variances in the gradient in performance across gender were ,  �̂�1 = 4.69, and �̂�0(𝐶) = 4.68, while for the 

performance gradient across minority categories it was,  �̂�1 = 26.76, and �̂�0(𝐶) = 26.39.  Still, this possible limitation should be kept in mind when 

interpreting results.   

 
6 The set of student-level covariates depend on the study. They always include the pretest, as well as other covariates, such as a dummy variable to 

indicate ELL status.  Table B1 in Appendix B lists the covariates used in analysis. 

7 Missing values for covariates (other than the moderator) were addressed using the dummy variable method (Puma et al., 2009). This approach 

involves modeling a series of dummy variables, one for each covariate, that indicate whether the value of the covariate is missing. Where data are 

missing predominantly at the student level, as was the case in the studies examined, the dummy variable method yields effect estimates with less bias 

than the tolerance threshold set by the What Works Clearinghouse (described in Puma et al. 2009). Students without a posttest, and students with a 

missing value for the moderator being analyzed, were excluded from analysis. 

   



         

explore the question with respect to Study 1 only.  Evaluating this question across more studies is needed to 

provide a definitive answer, that is why we consider this test to be a proof of concept.8  

Results 

RESEARCH QUESTIONS 1 AND 2 

We address the first two research questions per moderator, first for gender and then for socioeconomic status. 

With Gender as the Moderator 

Figure 4 compares 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓), with gender as the moderator. In this case we have 12 

results from 6 studies that reported differential impacts for this moderator, coded 1 for male and 0 for female. 

The median values are .464 and .179, respectively. The result indicates that when estimates are based on cross-

site comparisons, smaller levels of absolute bias are observed for differential impacts than for average impacts.  

 

 

  Study 1 

 Study 2 

 Study 3 

 Study 4 

 Study 5 

 Study 6 
 

 

 

8 To address the third research question we were able to limit analysis to controls only. 
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In Figure 5, 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) are divided by magnitudes of average and differential impacts, 

respectively. That is, each type of Root Mean Squared Bias is expressed as a proportion of the magnitude of the 

average effect.  The median values are 9.412 and 2.803 for average and differential effects, respectively. The 

level of bias as a proportion of the corresponding effect size is larger for average than for differential impacts. 

(While included in calculation of medians, we removed two values from the graph, where the differential 

impact in the denominators was very small (.001 sd) resulting in very large numbers of the ratio of 104.881 and 

282.843.)    

 

 Study 1 

 Study 2 

 Study 3 

 Study 4 

 Study 5 

 Study 6 
 

 

With Socioeconomic Status as the Moderator  

Figure 6 compares 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) with socioeconomic status as the moderator. In this case 

we have 11 results from 5 studies that reported differential impacts for this moderator (in each case using 

student Free or Reduced Price Lunch eligibility, with eligible coded “1” and non-eligible coded “0”). The 

median values are .381 and .197 for the average and differential impact, respectively. As with gender, the 

result indicates that when estimates are based on cross-site comparisons, smaller levels of absolute bias are 

observed for differential impacts than for average impacts.  
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 Study 2 
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In Figure 7, 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) are divided by magnitudes of average and differential impacts, 

respectively. That is, each type of Root Mean Squared Bias is expressed as a proportion of the magnitude of the 

average effect. The median values are 8.295, 1.900 for average and differential effects respectively. As with 

gender, the level of bias as a proportion of the corresponding effect size is larger for average than for 

differential impact. While included in the calculation of medians, we removed one value from the graph, 

where the differential impact in the denominator was very small (.001 sd) resulting in a very large number of 

the ratio of 54.772.  
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RESEARCH QUESTION 3 

The third research question addresses whether adjusting for differences in macro variables across sites reduces 

either 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) or 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓). The results are based only on Study 1, and therefore should be seen as a 

proof of concept rather than as definitive.  

Tables 1 and 2 and Figure 8, show the magnitudes of 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡) and 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) adjusting for effects of 

macro variables on variation in outcomes across sites. The quantities are expressed in standard deviation units 

of control group performance before any covariate adjustments. 
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𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡)
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We see that covariate adjustments lead to reductions in 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡). The estimate of cross-site variability in 

average performance, 𝜏0(𝐶), is not statistically significant once effects of all macro-level variables are adjusted-

for. 

Consistent with findings presented above, 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓)  is lower than 𝑅𝑀𝑆𝐵(𝐼𝑚𝑝𝑎𝑐𝑡)  to start with and this 

holds for both gender and Minority status. 𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓) associated with Minority status is larger than for 

gender, indicating more variation across sites in the performance gradient across categories for that moderator. 

For the gender gradient, adjusting for effects of macro-level covariates does not produce a reduction in 

𝑅𝑀𝑆𝐵(𝐷𝑖𝑓𝑓). With Minority status as the moderator, the estimate of cross-site variability in differential 

performance, 𝜏1(𝐶), is not statistically significant once effects of all macro-level variables are adjusted-for. In the 

case of this one study, adjusting for effects of macro variables across sites dramatically reduced RMSB 

attributable to differences across sites in average performance. In comparison, reductions in RMSB attributable 

to differences across sites in performance gradients were slight.  
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Conclusions 

In this work we evaluated the potential of CGSs to produce unbiased estimates of differential program impact 

across subgroups of individuals, when comparisons are made between sites. Based on several models, we 

concluded that bias from macro variables that affect average achievement (our term Q) is differenced away 

when calculating differences across sites in the performance gradient between subgroups. The same bias term 

is not eliminated when estimating average impact by comparing differences in average achievement across 

sites. However, a macro effect associated with differences in the performance gradient across sites (our term K) 

can still introduce bias in estimates of differential impact based on cross-site comparisons.     

We studied these points empirically using a WSC approach. We estimated 𝑅𝑀𝑆𝐵 for average and differential 

impact for 12 outcomes from six studies. We found that 𝑅𝑀𝑆𝐵 quantities associated with CGS-based estimates 

of differential impact were generally lower than for average impact, as our models had indicated; however, 

they were not trivially different from zero.  

As a proof of concept, with one study we examined whether adjusting for effects of macro variables across 

sites using regression methods would reduce levels of 𝑅𝑀𝑆𝐵. The strategy lowered, to near zero, the 𝑅𝑀𝑆𝐵 

associated with differences across sites in average performance, but it had a smaller effect on reducing 𝑅𝑀𝑆𝐵 

for performance gradients across sites. Given the one study used to address this question, we cannot say how 

typical the result is; therefore, more study of this question is necessary to draw firmer conclusions.  

IMPLICATIONS 

At the start of this work, we argued for the importance and feasibility of evaluating differential impact 

quantities. In this work we have demonstrated the potential for using QEDs, specifically CGDs, to produce 

accurate estimates of differential program impact. Given that adequate statistical power for evaluating 

differential impacts across subgroups of individuals is achievable (Jaciw et al., 2016; Bloom, Michalopoulos 

and Hill, 2005) and that CGDs can produce estimates of differential impact with limited bias, we see an 

opportunity to expand our knowledge base about which programs work better and for whom, by routinely 

building tests of differential impact into multi-site and cluster randomized experiments. While tests of 

moderated impact are normally seen as just exploratory, we see a much more prominent role for the 

evaluation of moderated impacts, especially given the potential for low bias in results. 
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Appendix A. Derivation of Expressions for Bias from Macro Effects in CGSs 

 

Express subgroup control performance at one site as a function of control performance at the other site plus 

bias terms 𝑄 and 𝐾: 

𝑌(𝐶𝐴) = 𝑌∗(𝐶𝐴) + 𝑄           (A1) 

𝑌(𝐶𝐵) = 𝑌∗(𝐶𝐵) + 𝑄 + 𝐾          (A2) 

Assuming subgroups A and B are mutually exclusive and exhaustive of samples at L0, and at L1, we can 

express average control performance at each location as: 

𝑌(𝐶) = 𝜋𝐴𝑌(𝐶𝐴) + (1 − 𝜋𝐴)𝑌(𝐶𝐵)         (A3) 

𝑌∗(𝐶) = 𝜋𝐴
∗𝑌∗(𝐶𝐴) + (1 − 𝜋𝐴

∗)𝑌∗(𝐶𝐵)         (A4) 

Next, we write the expression for Bias(1): 

𝐵𝑖𝑎𝑠(1) = 𝑌(𝐶) − 𝑌∗(𝐶)               (A5) 

= [𝜋𝐴𝑌(𝐶𝐴) + (1 − 𝜋𝐴)𝑌(𝐶𝐵)] − [𝜋𝐴
∗𝑌∗(𝐶𝐴) + (1 − 𝜋𝐴

∗)𝑌∗(𝐶𝐵)]  

= [𝜋𝐴(𝑌∗(𝐶𝐴) + 𝑄) + (1 − 𝜋𝐴)(𝑌∗(𝐶𝐵) + 𝑄) + (1 − 𝜋𝐴)𝐾))] − [𝜋𝐴
∗(𝑌∗(𝐶𝐴)) 

 +(1 − 𝜋𝐴
∗)𝑌∗(𝐶𝐵)] 

= (1 − 𝜋𝐴)𝐾 + [𝜋𝐴(𝑌∗(𝐶𝐴) + 𝑄) + (1 − 𝜋𝐴)(𝑌∗(𝐶𝐵) + 𝑄)] − [𝜋𝐴
∗(𝑌∗(𝐶𝐴)) 

+(1 − 𝜋𝐴
∗)𝑌∗(𝐶𝐵)] 

= (1 − 𝜋𝐴)𝐾 + 𝑄 + [(𝜋𝐴 − 𝜋𝐴
∗)𝑌∗(𝐶𝐴)] − [(𝜋𝐴 − 𝜋𝐴

∗)𝑌∗(𝐶𝐵)]    

Next, we write the expression for Bias(2):  

𝐵𝑖𝑎𝑠(2) =  Δ𝐴−𝐵
∗ − Δ𝐴−𝐵               (A6) 

 = [𝑌(𝐶𝐴) − 𝑌(𝐶𝐵)] − [𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵)] 

= [𝑌∗(𝐶𝐴) + 𝑄 − (𝑌∗(𝐶𝐵) + 𝑄 + 𝐾)] − [𝑌∗(𝐶𝐴) − 𝑌∗(𝐶𝐵)] = −𝐾   



 

             

Appendix B. Details of Six Studies used in the Empirical Analysis 

 

 



 

             

 

 

 

  

 



 

         

Appendix C: Macro-Level Variables Used to Address Research Question 3 

    

 
 

 

 

 


